
X3T11/97-

X3T11/Project xxxx-D/REV 0.7

HIGH-PERFORMANCE PARALLEL INTERFACE -

Scheduled Transfer

(HIPPI-ST)
June 5, 1997

Secretariat:

Information Technology Industry Council (ITI)

ABSTRACT: This standard specifies a data transfer protocol that uses small control messages to pre-
arrange data movement. Buffers are allocated at each end before the data transmission, allowing full-
rate, non-congesting data flow between the end devices. The control and data may use different
physical media, or may share a single physical medium. Procedures are provided for moving data over
HIPPI and other media.

NOTE:

This is an internal working document of X3T11, a Technical Committee of Accredited Standards
Committee X3. As such, this is not a completed standard. The contents are actively being modified by
X3T11. This document is made available for review and comment only. For current information on the
status of this document contact the individuals shown below:

POINTS OF CONTACT:

Roger Cummings (X3T11 Chairman) Ed Grivna (X3T11 Vice-Chairman)
Distributed Processing Technology Cypress Semiconductor
140 Candace Drive 2401 East 86th Street
Maitland, FL 32751 Bloomington, MN 55425
 (407) 830-5522 x348, Fax: (407) 260-5366 (612) 851-5200, Fax: (612) 851-5087
 E-mail: cummings_roger@dpt.com E-mail: elg@cypress.com

Don Tolmie (HIPPI-ST Technical Editor)
Los Alamos National Laboratory
CIC-5, MS-B255
Los Alamos, NM 87545
 (505) 667-5502, Fax: (505) 665-7793
 E-mail: det@lanl.gov

working draft - HIPPI-ST Rev 0.7, 6/5/97

ii

Comments on Rev 0.7

This is a preliminary document undergoing lots of
changes. Many of the additions are just place
holders, or are put there to stimulate discussion.
Hence, do not assume that the items herein are
correct, or final – everything is subject to change.
This page tries to outline where we are; what has
been discussed and semi-approved, and what
has been added or changed recently and
deserves your special attention. This summary
relates to changes since the previous revision.
Also, previous open issues are outlined with a
single box, new open issues ones are marked
with a double bar on the left edge of the box.

Changes are marked with margin bars so that
changed paragraphs are easily found, and then
highlights mark the specific changes. The list
below just describes the major changes, for detail
changes please compare this revision to the
previous revision. The major technical
changes are printed in bold.

Please help us in this development process by
sending comments, corrections, and suggestions
to the Technical Editor, Don Tolmie, of the Los
Alamos National Laboratory, at det@lanl.gov. If
you would like to address the whole group
working on this document, send the comment(s)
to hippi@network.com.

1. In the Foreword, deleted the bullet that said
“This standard provides an upward growth
path for legacy HIPPI-based systems”.

2. In the Introduction, deleted the bullet that
said “Mappings from IPv4, IPv6, and MPI
upper-layer protocols into Scheduled
Transfers” since these will be documented in
other places, e.g., RFCs.

3. Deleted everything associated with
Concatenate and Source_Concatenate.
Since these were deletions, some of the
highlights and margin bars are
somewhat cryptic. This is considered a
major technical change, but only this
change item is listed in bold.

4. In 3.1.10, changed “…carried separately…”
to “…carried in the Schedule Header
separately…”.

5. In 3.3, and throughout the document,
changed "END" to "End", and "ACK" to
"Ack".

6. In 4.2, split the paragraph into two
paragraphs, and the figure into two figures,
and did some minor rewording, all for
improved clarity.

7. In figure 5, changed "Remote end" to
"Originating Source", "Local end" to "Final
Destination", "T_idn" with "S_idn" and
"R_idn", and "B_numn" to "B_idn".

8. In 4.3.4, changed the maximum Buffer
size from 264 to 263 bytes. Changed the
representation for Bufsize to "2Bufsize where 8
≤ Bufsize ≤ 63".

9. In 4.3.5, changed an STU's maximum
payload size from 232 to 231 bytes.
Changed the representation for Max-STU to
"2Max-STU where 8 ≤ Max-STU ≤ 31".

10. In 4.3.6, added that RQPs don't consume
slots. Changed the last few sentences so
that it is incumbent upon the Originating
Source to keep a slot in reserve instead of
having the Final Destination advertise one
too few slots. In the last paragraph, added
some text about knowing when to update
Slots vision.

11. In 4.4.1, close to the end, changed "…are
used…" to "…may be used…".

12. In 4.4.2, split the original last sentence of the
first paragraph into two sentences so that
the exception of using B_id, instead of
T_id, in Request_To_Receive and Data
Operations can be stated in the last
sentence.

13. In 4.4.3, added the whole new clause
specifying the Block identifier (B_id).
Previously all Blocks of a Transfer used
the same identifier, and now each Block
can have a different value.

14. In 4.4.6, changed the maximum Block
size from 264 to 263 bytes. Changed the
representation for Blocksize to "2Blocksize

where 8 ≤ Blocksize ≤ 63".

15. In 4.4.8, deleted the concept of Bufx
containing part of a concatenated address.

16. In 4.4.9, deleted the concept of OS_Bufx
containing part of a concatenated address.

17. In 4.4.10, clarified where the Opaque data is
carried. Deleted the specification about

working draft - HIPPI-ST Rev 0.7, 6/5/97

iii

which Schedule Header field contains the
most and least significant parts of the
Opaque data.

18. In 4.4.11, second paragraph, changed "No
Offset is required…" to "Offset = zeros is
required…".

19. In 5, changed "…a set of HIPPI-ST services
must be supplied sufficient to", "…a
sufficient set of HIPPI-ST services must be
supplied to…".

20. In figure 8, the T_len field was renamed
"Sync". This change ripples throughout the
document. Note that it is just the field that
changed name, the 64-bit T_len parameter
did not change.

21. In 6.1, under Bufx, Offset, OS_Bufx, and
OS_Offset, the text was changed to delete
the concatenated address mode. Under
R_id, broke it into two subsections for
carrying R_id and B_id. Under Sync,
added the text for CTS Operations
containing 0's in the high-order 16-bits
and B_id in the low-order 16 bits.

22. In 6.2, under Silent, "OS_Bufx" was
changed to "Bufx", and "semiotics" was
changed to "semantics".

23. In figure 8 and 6.2, the Concatenate and
Source_Concatenate bits were changed
to "Reserved".

24. In 7, the use of the Concatenate and
Source_Concatenate flags was deleted.

25. In 7.1, the T_len field was changed to
Sync, and the use of the Concatenate and
Source_Concatenate flags was deleted.

26. In 7.2, the T_len field was changed to
Sync, and the use of the Concatenate and
Source_Concatenate flags was deleted..

27. In 7.3, added the last portion of the first
paragraph reading “…that decreases timeout
dependency for releasing resources.

28. In 8.1, the T_len field was changed to
Sync. Changed the Op code from x’06’
to x’16’. The last paragraph was reworded
for clarity.

29. In 8.2, changed the Op code from x’07’ to
x’17’. The use of the Concatenate and
Source_Concatenate flags was deleted.

30. In 8.3, the first paragraph was changed with
the deletion of the Concatenate and

Source_Concatenate flags. Added “…(the
initiator)…” for clarity. The third paragraph
had some rewording for clarity. Changed
the Op code from x’08’ to x’18’, and the
T_len field was changed to Sync.
Changed the R_id parameter to B_id.
Added text for B_id.

31. In 8.4, the first and last paragraphs were
changed to indicate that an RTRR may be
issued to indicate that the associated Data
Operation will be delayed. Changed the
Op code from x'09' to x'19'.

32. In 8.5, changed the Op code from x’0A’ to
x’1A’. The use of the Concatenate and
Source_Concatenate flags was deleted.
Added the Block identifier (B_id)
parameter to the semantics list, and
descriptive text below it.

33. In 8.6, changed the Op code from x’0B’ to
x’1B’. The use of the Concatenate and
Source_Concatenate flags was deleted.
Changed the R_id parameter to B_id, in
the semantics and the text accordingly.
Sync is now carried in the Sync field, so the
semantics and the text under "Sync", were
changed accordingly.

34. In 8.7, changed the Op code from x’0C’ to
x’1C’. The use of the Concatenate and
Source_Concatenate flags was deleted.
Sync is now carried in the Sync field, so the
semantics and the text under "Sync", were
changed accordingly.

35. In 8.8, changed the Op code from x’0D’ to
x’1D’. The use of the Reject, Concatenate
and Source_Concatenate flags was deleted.
Sync is now carried in the Sync field, so the
semantics and the text under "Sync", were
changed accordingly.

36. In 8.9, changed the Op code from x’0E’ to
x’1E’. The name were changed from END
to End, and from END_ACK to End_Ack.

37. In 8.10, changed the Op code from x’0F’
to x’1F’. The names were changed from
END to End, and from END_ACK to
End_Ack.

38. In table 2, the Concatenate and
Source_Concatenate flags were deleted.
The T_len field was renamed to Sync. The
Sync value for PT, PTA and PTC were
changed to *.

working draft - HIPPI-ST Rev 0.7, 6/5/97

iv

39. In table 3, the Concatenate and
Source_Concatenate flags were deleted.
The T_len field was renamed to Sync. The
Op values were updated to match the
semantics in 8.1 through 8.10, i.e., changed
the high Op bit from 0 to 1. Changed R_id
to B_id for RTR and Data. Added zeros and
B_id to CTS in the Sync field. Changed to a
single field for Opaque data in Data
Operations.

40. In 9.3.1, deleted the text about undefined
Opcode for "future supersets".

41. In 9.4.4, changed the maximum sizes
from 64 to 63, and from 264 to 263.

42. Between 9.5.2 and 9.5.3, deleted the
clauses associated with Concatenate and
Source_Concatenate.

43. In 9.5.5, added the new clause for
checking for Block out of order.

44. In 9.5.6, changed 64 to 63, and 264 to 263.

45. In 9.5.7, changed "…have not been
received…" to "…have not occurred…".
Changed "…Request_State_Response…"
to "…Request_To_Receive_Response…".

46. In 9.5.8, changed "…Error logged." to
"…Error should be logged."

47. In table 5, added the Out_Of_Order_B_num
logged error. Fixed a few other typos.

48. In figures A.1 and A.2, changed the D_ULA
and S_ULA fields to be contiguous
(consistent with HIPPI-6400-PH) rather than
show the horizontal bar between the 32 bit
words. Changed the T_len field to Sync.

49. Annex B had lots of editorial changes to the
text, but no substantive technical changes.
For example, all of the Operations were
spelled out, e.g., CTS to Clear_To_Send.

50. Annex C had lots of editorial changes, but
we were not able to include all of the
changes we would like in this revision.
Hence, take it for what is there now and stay
tuned for future revisions. None of the
changes are marked with margin bars or
highlights due to the extensive nature of the
changes, i.e., you are better off to start
reading fresh.

working draft - HIPPI-ST Rev 0.7, 6/5/97

v

Contents
Page

Foreword .. ix

Introduction.. x

1 Scope ... 1

2 Normative references.. 1

3 Definitions and conventions .. 2
3.1 Definitions ... 2
3.2 Editorial conventions .. 3

3.2.1 Binary notation ... 3
3.2.2 Hexadecimal notation ... 3

3.3 Acronyms and other abbreviations ... 3

4 System overview .. 3
4.1 Control Channels and Data Channels .. 3
4.2 System model ... 4
4.3 Virtual Connections ... 6

4.3.1 Sequences and Operations... 6
4.3.2 Ports... 6
4.3.3 Keys ... 7
4.3.4 Buffer size (Bufsize) ... 7
4.3.5 Max-STU size... 7
4.3.6 Slots and Sync parameter... 7
4.3.7 Persistent ... 8

4.4 Data movement... 8
4.4.1 Sequences and Operations... 8
4.4.2 Transfer identifiers (R_id and S_id) .. 9
4.4.3 Block identifier (B_id) ... 9
4.4.4 Transfer length (T_len) ... 9
4.4.5 Blocks... 9
4.4.6 Block size ... 9
4.4.7 STUs .. 9
4.4.8 Bufx and Offset .. 10
4.4.9 OS_Bufx and OS_Offset .. 10
4.4.10 Opaque data.. 10
4.4.11 Packing examples .. 11

4.5 Operations management ... 12
4.5.1 Flow control ... 12
4.5.2 Status Operations... 12
4.5.3 Rejected Operations ... 12
4.5.4 Lost Operations ... 12
4.5.5 Interrupts .. 12

5 Service interface.. 13
5.1 Service primitives.. 13
5.2 Sequences of primitives .. 13

6 Schedule Header ... 14
6.1 Schedule Header fields ... 14
6.2 Scheduled Transfer flags... 15

working draft - HIPPI-ST Rev 0.7, 6/5/97

vi

7 Virtual Connection management .. 16
7.1 Request_Port .. 16
7.2 Request_Port_Response... 17
7.3 Port_Teardown.. 17
7.4 Port_Teardown_Ack .. 18
7.5 Port_Teardown_Complete... 18

8 Data movement ... 19
8.1 Request_To_Send... 19
8.2 Request_To_Send_Response ... 20
8.3 Request_To_Receive.. 20
8.4 Request_To_Receive_Response... 21
8.5 Clear_To_Send ... 21
8.6 Data .. 22
8.7 Request_State... 23
8.8 Request_State_Response ... 23
8.9 End ... 24
8.10 End_Ack.. 25

9 Error processing... 27
9.1 Operation timeout.. 27
9.2 Operation Pairs ... 27
9.3 Syntax errors... 27

9.3.1 Undefined Opcode.. 27
9.3.2 Unexpected Opcode ... 27

9.4 Virtual Connection errors... 27
9.4.1 Invalid Key or Port .. 27
9.4.2 Slots exceeded.. 28
9.4.3 Unknown EtherType ... 28
9.4.4 Illegal Bufsize ... 28
9.4.5 Illegal STU size .. 28

9.5 Scheduled Transfer errors ... 28
9.5.1 Invalid S_id .. 28
9.5.2 Bad Data Channel specification .. 28
9.5.3 Persistent not available... 28
9.5.4 Out of Range B_num, Bufx, Offset, or S_count 28
9.5.5 Block out of order error ... 29
9.5.6 Illegal Blocksize.. 29
9.5.7 Request_To_Receive error .. 29
9.5.8 Undefined Flag ... 29

Tables

Table 1 – Response to a rejected Operation .. 12
Table 2 – Virtual Connection Operations summary between end devices

A and B... 25
Table 3 – Data transfer and status Operations summary between end devices

S and R... 26
Table 4 – Operation pairs guarded by Op_timeout ... 27
Table 5 – Summary of logged errors .. 29
Table C.1 – Scheduled Transfer example summary... 39
Table C.2 – Red / Blue Virtual Connection parameters 40
Table C.3 – Pi / Rho Virtual Connection parameters .. 43

working draft - HIPPI-ST Rev 0.7, 6/5/97

vii

Figures

Figure 1 – System overview... 4
Figure 2 – HIPPI-ST over different media .. 4
Figure 3 – User data hierarchy... 4
Figure 4 – Transmission units .. 4
Figure 5 – Scheduled Transfer Final Destination model 5
Figure 6 – Data packing examples ... 11
Figure 7 – HIPPI-ST service interface.. 13
Figure 8 – Schedule Header contents .. 14
Figure 9 – Flags summary ... 15
Figure A.1 – HIPPI-ST Operations carried in HIPPI-6400-PH Messages 31
Figure A.2 – HIPPI-ST Operations carried in HIPPI-FP packets 32
Figure B.1 – Many-to-one striping .. 34
Figure B.2 – One-to-many striping ... 34
Figure B.3 – Many-to-many striping ... 34
Figure C.1 – Virtual Connection information exchanged................................... 36
Figure C.2 – Block 0 buffer tiling.. 37
Figure C.3 – Block 1 buffer tiling.. 38
Figure C.4 – Persistent memory setup ... 40
Figure C.5 – Network topology... 42

Annexes

A Using lower layer protocols .. 30
A.1 HIPPI-6400-PH as the lower layer... 30
A.2 HIPPI-FP as the lower layer .. 30

B HIPPI-ST striping... 33
B.1 Striping principles ... 33
B.2 Many-to-one striping ... 33
B.3 One-to-many striping .. 33
B.4 Many-to-many striping .. 34

C Scheduled Transfer example... 35
C.1 Detailed simple transfer example.. 35

C.1.1 Virtual Connection set up ... 35
C.1.2 Scheduled Transfer set up ... 36
C.1.3 Block 0 transfer.. 36
C.1.4 Block 1 Clear_To_Send ... 37
C.1.5 Ending the Virtual Connection .. 38

C.2 Persistent memory example ... 40
C.2.1 Set up .. 40
C.2.2 Reading ... 41
C.2.3 Writing ... 41
C.2.4 Closing the persistent memory ... 42

C.3 Translated, striped Ethernet to HIPPI-6400 example........................... 42
C.3.1 Virtual Connection Setup.. 42
C.3.2 Sending to Rho ... 43
C.3.3 Sending to Pi .. 45

working draft - HIPPI-ST Rev 0.7, 6/5/97

ix

Foreword (This foreword is not part of American National Standard X3.xxx-199x.)

This American National Standard specifies a data transfer protocol that uses
small control messages to pre-arrange data movement. Buffers are allocated at
each end before the data transmission, allowing full-rate, non-congesting data
flow between the end devices. The control and data may use different physical
media, or may share a single physical medium. Procedures are provided for
moving data over HIPPI and other media.

This document includes annexes which are informative and are not considered
part of the standard.

Requests for interpretation, suggestions for improvement or addenda, or defect
reports are welcome. They should be sent to the X3 Secretariat, Information
Technology Industry Council, 1250 Eye Street, NW, Suite 200, Washington, DC
20005.

This standard was processed and approved for submittal to ANSI by Accredited
Standards Committee on Information Processing Systems, X3. Committee
approval of the standard does not necessarily imply that all committee members
voted for approval. At the time it approved this standard, the X3 Committee had
the following members:

(List of X3 Committee members to be included in the published standard by
the ANSI Editor.)

Subcommittee X3T11 on Device Level Interfaces, which developed this
standard, had the following participants:

(List of X3T11 Committee members, and other active participants, at the
time the document is forwarded for public review, will be included by the
Technical Editor.)

working draft - HIPPI-ST Rev 0.7, 6/5/97

x

Introduction

This American National Standard specifies a data transfer protocol that uses
small control messages to pre-arrange data movement. Buffers are allocated at
each end before the data transmission, allowing full-rate, non-congesting data
flow between the end devices. The control and data may use different physical
media, or may share a single physical medium. Procedures are provided for
moving data over HIPPI and other media.

Characteristics of a HIPPI-ST include:

– A hierarchy of data units (Scheduled Transfer Units (STUs), Blocks, and
Transfers).

– Support for Get and Put Operations.

– Parameters exchanged between end devices for port selection, transfer
identification, and Operation validation.

– Features supporting efficient mapping between the sender's and receiver's
natural buffer sizes.

– Provisions for resending partial Transfers for error recovery.

– Mappings onto HIPPI-6400-PH, HIPPI-FP (for HIPPI-800 traffic), and
Ethernet lower-layer protocols.

working draft proposed American National Standard ANSI X3.xxx-199x

1

High-Performance Parallel Interface –
Scheduled Transfer (HIPPI-ST)

1 Scope

This American National Standard specifies a data
transfer protocol that uses small control
messages to pre-arrange data movement.
Buffers are allocated at each end before the data
transmission, allowing full-rate, non-congesting
data flow between the end devices. The control
and data may use different physical media, or
may share a single physical medium. Procedures
are provided for moving data over HIPPI and
other media.

Specifications are included for:

– Virtual Connection setup and teardown;

– determining the number of Operations the
other end can accept;

– determining the buffer size of the other end;

– exchanging Key, Port, transfer identifiers, and
buffer size values specific to the end nodes;

– determining a maximum size transmission
unit that will not overrun receiver buffer
boundaries;

– using buffer indices and 64-bit addresses;

– acknowledging partial transfers so that
buffers can be reused;

– providing means for resending partial
Transfers for error recovery; and

– terminating transfers in progress.

Note that parts of the Scheduled Transfer
protocol depend upon in-order delivery by the
lower layer, which may not be available on all
media.

2 Normative references

The following American National Standards
contain provisions which, through reference in
this text, constitute provisions of this American
National Standard. At the time of publication, the
editions indicated were valid. All standards are
subject to revision, and parties to agreements
based on this standard are encouraged to
investigate the possibility of applying the most
recent editions of the standards listed below.

ANSI X3.183-1991, High-Performance Parallel
Interface – Mechanical, Electrical, and Signalling
Protocol Specification (HIPPI-PH)

ANSI X3.210-1992, High-Performance Parallel
Interface – Framing Protocol (HIPPI-FP)

ANSI X3.xxx-199x, High-Performance Parallel
Interface – 6400 Mbit/s Physical Layer (HIPPI-
6400-PH)

ANSI/IEEE Std 802-1990, IEEE Standards for
Local and Metropolitan Area Networks: Overview
and architecture (formerly known as IEEE Std
802.1A, Project 802: Local and Metropolitan Area
Network Standard — Overview and Architecture).

ISO/IEC 8802-2:1989 (ANSI/IEEE Std 802.2-
1989), Information Processing Systems – Local
Area Networks – Part 2: Logical link control.

American National Standard
for Information Technology –

working draft - HIPPI-ST Rev 0.7, 6/5/97

2

3 Definitions and conventions

3.1 Definitions

For the purposes of this standard, the following
definitions apply.

3.1.1 Block: An ordered set of one or more
STUs within a Scheduled Transfer. (See figure 3
and 4.4.5.)

3.1.2 Buffer Index (Bufx): A 32-bit parameter
identifying the starting address of a data buffer.
Bufx may be either a pointer to the starting
address or the most significant part of a 64-bit
starting address.

3.1.3 Control Channel: The logical channel
that carries the Control Operations.

3.1.4 Control Operation: A control function
consisting of a Schedule Header and an optional
32-byte payload. (See figure 3.)

3.1.5 Data Channel: The logical channel that
carries the data payload.

3.1.6 Data Operation: A data movement
Operation consisting of a Schedule Header and
up to 2 gigabytes of user payload. (See figure 3).

3.1.7 Final Destination: The end device that
receives, and operates on, the data payload.
This is typically a host computer system, but may
also be a non-transparent translator, bridge, or
router.

3.1.8 Key: A local identifier used to validate
Operations. (See 4.3.3.)

3.1.9 log: The act of making a record of an
event for later use.

3.1.10 Opaque data: Eight bytes of Source
ULP to Destination ULP peer-to-peer information
carried in the Scheduled Header separately from
the data payload. (See 4.4.10)

3.1.11 Operation: A Scheduled Transfer
function, i.e., a Control Operation or the data
movement specified in an STU.

3.1.12 optional: Characteristics that are not
required by HIPPI-ST. However, if any optional
characteristic is implemented, it shall be
implemented as defined in HIPPI-ST.

3.1.13 Originating Source: The end device
that generates the data payload. This is typically

a host computer system, but may also be a non-
transparent translator, bridge, or router.

3.1.14 Persistent: A control mode used to
retain buffers for multiple Transfers. (See 4.3.7.)

3.1.15 Port: A logical connection within an end
device. (See 4.3.2.)

3.1.16 Scheduled Transfer: An information
transfer, normally used for bulk data movement
and low processing overhead, where the
Originating Source and Final Destination
prearrange the transfer using the protocol defined
in this standard.

3.1.17 Scheduled Transfer Unit (STU): The
data payload portion of a Data Operation moved
from an Originating Source to a Final Destination.
STUs are the basic components of Blocks. (See
figure 3 and 4.4.7.)

3.1.18 Slot: A space reserved for a Control
Operation, or the Schedule Header portion of an
STU, in the end device. (See 4.3.6.)

3.1.19 Transfer: An ordered set of one or more
Blocks within a Scheduled Transfer. (See figure
3 and 4.2.)

3.1.20 upper-layer protocol (ULP): The
protocol above the service interface. These
could be implemented in hardware, software, or
they could be distributed between the two.

3.1.21 Virtual Connection: A bi-directional
logical connection used for Scheduled Transfers
between two end devices. A Virtual Connection
contains a logical Control Channel and a logical
Data Channel in each direction.

working draft - HIPPI-ST Rev 0.7, 6/5/97

3

3.2 Editorial conventions

In this standard, certain terms that are proper
names of signals or similar terms are printed in
uppercase to avoid possible confusion with other
uses of the same words (e.g., STU). Any
lowercase uses of these words have the normal
technical English meaning.

A number of conditions, sequence parameters,
events, states, or similar terms are printed with
the first letter of each word in uppercase and the
rest lowercase (e.g., Block, Transfer). Any
lowercase uses of these words have the normal
technical English meaning.

The word shall, when used in this American
National standard, states a mandatory rule or
requirement. The word should, when used in this
standard, states a recommendation.

3.2.1 Binary notation

Binary notation is used to represent relatively
short fields. For example a two-bit field
containing the binary value of 10 is shown in
binary format as b'10'.

3.2.2 Hexadecimal notation

Hexadecimal notation is used to represent some
fields. For example a two-byte field containing a
binary value of b'11000100 00000011' is shown in
hexadecimal format as x'C403'.

3.3 Acronyms and other abbreviations

Ack acknowledge indication
CTS Clear_To_Send
EndA End_Ack
HIPPI High-Performance Parallel Interface
K kilo (210 or 1024)
KB kilobyte (1024 bytes)
MAC Media Access Control
PT Port_Teardown
PTA Port_Teardown_Ack
PTC Port_Teardown_Complete
RQP Request_Port
RQPR Request_Port_Response
RS Request_State
RSR Request_State_Response
RTR Request_To_Receive

RTRR Request_To_Receive_Response
RTS Request_To_Send
RTSR Request_To_Send_Response
STU Scheduled Transfer Unit
ULP upper-layer protocol

4 System overview

This clause provides an overview of the structure,
concepts, and mechanisms used in Scheduled
Transfers. Figure 1 gives an example of
Scheduled Transfers being used to communicate
between device A and device B over some
physical media. Annex C describes the steps in a
typical Scheduled Transfer. Figure 2 shows
HIPPI-ST being used over different media.

4.1 Control Channels and Data Channels

Each Transfer has an Originating Source and
Final Destination. Each Originating Source and
Final Destination shall have a Control Channel
and one or more Data Channels. The Originating
Source sends the payload data, and the Final
Destination receives the payload data.

Control Operations shall be exchanged over the
Control Channel. Scheduled Transfer Units
(STUs), i.e., data payload, shall be exchanged
over the Data Channel(s). The information
volume on the Data Channel(s) will be probably
many times the volume on the Control Channel;
hence the available bandwidths should be
balanced accordingly. For best performance, the
Control Channel should have low latency.

working draft - HIPPI-ST Rev 0.7, 6/5/97

4

Originating
Source

Final
Destination

Control Channel

Data Channel(s)

Control Channel

Data Channel(s)

Originating
Source

Final
Destination

Control Channel

Data Channel(s)

Control Channel

Data Channel(s)

HIPPI-ST HIPPI-ST
Lower

Layer(s)
Lower

Layer(s)

(May contain
intermediate

devices,
e.g., switches)

Interconnect
Network(s)

Device A Device B

Figure 1 – System overview

Translators,
Routers, or

Bridges

HIPPI-6400
switch(es)

HIPPI-6400
end nodes with

HIPPI-ST

Ethernet
fabric

Ethernet, or
Gigabit Ethernet,
end nodes with

HIPPI-ST

Fibre Channel
or other
fabric

Fibre Channel,
or other media
end nodes with

HIPPI-ST

HIPPI-800
switch(es)

HIPPI-800
end nodes with

HIPPI-ST

Figure 2 – HIPPI-ST over different media

4.2 System model

Multiple write (Put) or read (Get) functions may
be executed to move user data units, called
Transfers, over a Virtual Connection. As shown
in figure 3, a Transfer is composed of one or
more Blocks, and Blocks are composed of one or
more STUs. The Scheduled Transfer protocol
shall package the Transfer in Blocks and STUs
for delivery using lower layer protocol(s) and
media.

Transfer

Blocks

STUs

Figure 3 – User data hierarchy

As shown in figure 4, an STU shall be the data
payload portion of a Data Operation. A Data
Operation shall consist of a 40-byte Schedule
Header and an STU of up to 2 gigabytes (231

bytes). A Control Operation shall consist of a 40-
byte Schedule Header, and may contain an
additional 32 bytes of optional payload.

Schedule
Header

Schedule
Header

Optional
payload

40 bytes 32 bytes

Control
Operation

data payload (STU)

40 bytes ≤ 231 bytes

Data
Operation

Figure 4 – Transmission units

working draft - HIPPI-ST Rev 0.7, 6/5/97

5

Figure 5 shows the model used on a Final
Destination for the Scheduled Transfers. The
model on an Originating Source would be similar.

As Control Operations and Data Operations are
received, the Schedule Header of each is placed
in the Schedule Header queue for execution.
State information about the number of empty
Slots in the queue is available to the other end so
that it can avoid overrunning the queue.

The Virtual Connection Descriptor contains:

– static parameters defining the Virtual
Connection from the view of both the remote
end device and local end device (the top
portion of the Virtual Connection Descriptor box
in figure 5);

– current state information about the number of
empty "Slots" for Operation Schedule Headers,
and Operation Retry and Timeout parameters;

– identifiers for each of the Virtual Connection's
Transfers.

Figure 5 – Scheduled Transfer Final Destination model

Source

Port
Key
Bufsize
Max-STU Size
Max Slots
Persistent

Sync #
Current Slots

S_id1
S_id2

S_idi

Final
Destination

Port
Key
Bufsize
Max-STU Size
Max Slots
Persistent

Sync #
Current Slots

R_id1
R_id2

R_idi

Op-timeout
Max_retry

Virtual Connection
Descriptor

(Remote Port,
Local Port,
Local Key)

Slot

Schedule Header
 Queue

Transfer
Descriptor

Blocksize
T_len
B_id0
B_id1

B_idj

To other
Transfer
Descriptors

To other
Block
Descriptors

Block
Descriptor

Bufx0
Bufx1

Bufxk

Block Descriptor
Table

address 0
address 1

address n

Buffers

Originating
Slot
Slot
Slot

Slot

working draft - HIPPI-ST Rev 0.7, 6/5/97

6

A Transfer Descriptor, for each Transfer, contains
the Transfer length (T_len, in bytes), the Block
size (in bytes), and includes pointers to Block
Descriptors. The Block Descriptors (one for each
Block of a Transfer) identify the set of contiguous
Buffer Index (Bufx) values assigned to the Block.
And finally, the Buffer Descriptor Table provides
a base memory address for each Bufx.

In an effort to achieve maximum transfer rates
and efficiency, the receiver's job is made as easy
as possible, even at the expense of the transmit
side. It is expected that after validating an
Operation in the Final Destination, only a single
lookup will be needed to derive the absolute
memory address and correctly place the data.

4.3 Virtual Connections

Scheduled Transfers between an Originating
Source and Final Destination are pre-arranged to
decrease computational overhead during the
Transfer by allocating buffers at each end device.
The bi-directional path between the end devices
is called a Virtual Connection. A Virtual
Connection shall consist of an Originating Source
and Final Destination in each end device.

Once the Final Destination has indicated its
ability to accept the STUs, the Virtual Connection
should not become congested. In essence, the
Final Destination smoothly controls the flow. For
comparison, without pre-arranging the buffers,
the Originating Source would blindly send data
into the interconnection network where it might
have to wait for buffers to be assigned in the
Final Destination. On the down-side, Scheduled
Transfers require additional Control Operations
and round-trip latency. Once established, a
Virtual Connection may be used to carry multiple
Transfers. This Scheduled Transfer protocol
does not handle network resource reservations.

4.3.1 Sequences and Operations

During Virtual Connection setup, the end devices
shall exchange parameters specific to each
device. These parameters, shown in the upper
portion of the Virtual Connection Descriptor box
in figure 5 and detailed below, include values for:

– Port numbers (e.g., a Port dedicated to
HIPPI-FP or IP traffic);

– Keys (used for authenticating Operations);

– native buffer sizes (Bufsize) for determining
Final Destination buffer tiling;

– maximum STU size;

– maximum number of outstanding Operations
(Slots) to keep from overflowing the command
queues;

– whether or not they support Persistent mode.

The parameters assigned during setup shall apply
for the life of the Virtual Connection. Once
established, the Virtual Connection is accessed
as shown in figure 5 by the tuple "remote Port",
"local Port", and "local Key". The Control
Operations defined for Virtual Connection setup
are:

– Request_Port (See 7.1.)

– Request_Port_Response (See 7.2.)

The Control Operations defined for Virtual
Connection teardown are:

– Port_Teardown (See 7.3.)

– Port_Teardown_Ack (See 7.4.)

– Port_Teardown_Complete (See 7.5.)

4.3.2 Ports

Ports identify upper-layer entities within an end
device. The Port values shall be assigned by the
local end device and have no meaning on the
other end device. For example, when end device
A requests a Virtual Connection to end device B,
A shall select the value for A-Port and shall send
it to B in the Request_Port Operation. B shall
store the A-Port value and shall return it to A in
every Operation over this Virtual Connection.
Likewise, B shall select the value for B-Port.

An exception is the "well-known Port", i.e., Port
x'0000'. In this case, a request sent to the "well-
known Port" shall result in the receiving end
device assigning a specific local Port value based
on the EtherType parameter. EtherType
parameter values shall be as assigned in the
current "Assigned Numbers" RFC, e.g., RFC
17001). For example, if the HIPPI-ST is used to
encapsulate TCP/IP, then the EtherType would
be x'0800'. If HIPPI-ST is being used to
encapsulate legacy HIPPI-FP or user data, then

working draft - HIPPI-ST Rev 0.7, 6/5/97

7

the EtherTypes would be x'8180' and x'8181'
respectively.

If the incoming Port number is invalid, then the
Operations shall not be executed (see 9.4.1). A
Port value of x'0000' is valid in Request_Port
Operations; invalid in all other Operations.

4.3.3 Keys

Like the Ports, each end device shall select its
own 32-bit Key value for use on the Virtual
Connection. For example, when end device A
requests a Virtual Connection to end device B, A
shall select the value for A-Key and shall send it
to B in the Request_Port Operation. B shall store
the A-Key value and shall return it to A in every
Operation over this Virtual Connection. The A-
Key value has no meaning in B; it is only
significant in A where it shall be used to validate
that the Operation presented is really associated
with this Virtual Connection. Likewise, B shall
select the value for B-Key. Keys are similar in
nature to passwords; if the Key doesn't match,
then the Operation shall not be executed (see
9.4.1).

4.3.4 Buffer size (Bufsize)

Each end shall define the buffer size, in bytes,
that it wants to use. Buffer sizes may be the
same as host page sizes. It is most efficient
when the buffer sizes are the same on both ends,
but differing buffer sizes are supported (see
annex C). The buffer sizes shall be ≥ 256 bytes
and shall be an integral power of two, i.e., 2Bufsize

where 8 ≤ Bufsize ≤ 63.

4.3.5 Max-STU size

The Max-STU size, exchanged during Virtual
Connection setup, establishes the maximum data
payload size of an STU (see 4.4.11). Each end
device declares the desired Max-STU size it is
prepared to receive. The Max-STU size must be
no larger than its Bufsize. Intermediate devices
with smaller buffer sizes may lower this value.

Note that the Max-STU size in each direction
may be different.

Additionally, an STU’s maximum data payload
size shall be ≥ 256 bytes and an integral power of
two i.e., 2Max-STU where 8 ≤ Max-STU ≤ 31.

4.3.6 Slots and Sync parameter

The term Slot denotes memory at an end device
reserved for storing the Schedule Header of an
incoming Operation. Each Operation arriving at
an end device consumes one Slot, except for
Request_Port Operations, or for Data Operations
which consume a Slot only if Silent = 0 or
Interrupt = 1. An Originating Source shall control
the flow of Operations by sending no more
Operations than there are Slots available at the
other end. Any Operations that are sent in
excess of the number of available Slots may be
discarded by the receiver (see 9.4.2). In order to
avoid potential deadlocks that can happen if an
Originating Source consumes all of its allocated
slots at the Final Destination, an Originating
Source shall never consume all of its slots with
data movement Operations. Instead, and
Originating Source shall hold at least one slot in
reserve for possible use for an End,
Request_State, Request_State_Response, or
Port_Teardown sequence.

An end device learns the initial number of Slots
available (Slots value) at the remote end device
during the Virtual Connection setup (see 7.1 and
7.2). Later, an end device obtains the current
Slots value by reading the Slots parameter in a
received Request_State_Response. An end
device may solicit a Request_State_Response
from the remote end by either of two methods:
by setting the Send_State flag in the Schedule
Header of a Data Operation, or by sending a
Request_State Operation. A received Slots
value of x'FFFFFFFF' indicates that the remote
end does not implement Slot accounting.

NOTE – Slot flow control may not be needed when
the maximum number of Control Operations is
otherwise bounded or where dropped Operations
are acceptable.

1) RFC (Request For Comment) documents are working standards documents from the TCP/IP internetworking
community. Copies of these documents are available from numerous electronic sources (e.g., http://www.ietf.org)
or by writing to IETF Secretariat, c/o Corporation for National Research Initiatives, 1895 Preston White Drive, Suite
100 Reston, VA 20191-5434, USA.

working draft - HIPPI-ST Rev 0.7, 6/5/97

8

The received Slot value is a snapshot of the
number of Slots available at the remote end
device when the remote end device received the
soliciting Operation. The local end device may
continue to send Operations after soliciting a
Request_State_Response and may also solicit
multiple responses before receiving a reply. The
lower bound on the number of available Slots at
the remote end device is determined by the local
end device which adjusts its vision of the number
of Slots to account for outstanding Operations.
The adjustment consists of subtracting, from the
number of Slots indicated in the received
Request_State_Response Operation, the number
of Slot-consuming Operations sent by the local
end device after a Request_State_Response
solicitation.

The local end device can use the Sync parameter
to identify Request_State_Response messages
when there are multiple outstanding solicitations,
i.e., to know when to update, or not update, the
number of available Slots at the Final
Destination. The Sync parameter in a Data or
Request_State shall be copied and returned by
the remote end device in the corresponding
Request_State_Response. The Sync parameter
may be used by the local end device to mark the
request, and thus identify the
Request_State_Response with a particular
solicitation. The Sync values are locally
determined.

4.3.7 Persistent

The Persistent flag (see 6.2) controls buffer
retention in the Final Destination for the Virtual
Connection.

– When Persistent = 1, the memory in the Final
Destination allocated for the Scheduled
Transfer shall be retained for multiple transfers
and not released until a Port_Teardown or an
End Operation occurs. Note that Persistent = 1
bypasses the flow control provided by
Clear_To_Send, i.e., a Data Operation may be
sent at any time whether or not a
Clear_To_Send Operation has been received.
Sending information to a Frame Buffer is an
example of where Persistent might be used.

– When Persistent = 0, the memory for a Block
may be allocated for other uses after the Block
is complete. All Data Operations must be

enabled by a Clear_To_Send or
Request_To_Receive Operation.

Persistent is only usable between hosts that
mutually agree. Agreement is reached by
controlling the Persistent flag bit during the
Virtual Connection setup (see 7.1 and 7.2).

4.4 Data movement

4.4.1 Sequences and Operations

A write data sequence (which may be initiated by
either end of the Virtual Connection) shall be set
up by the end devices exchanging transfer
identifiers (T_id's), specific to each device, and
length parameters. The Control Operations
setting up a write data sequence are:

– Request_To_Send (See 8.1.)

– RTS_Response (See 8.2.)

A read data sequence, which moves the Transfer
as a single Block, requires that both ends had
previously allocated resources for the entire read
sequence with a Request_To_Send. The Control
Operations setting up a read data sequence are:

– Request_To_Receive (See 8.3.)

– Request_To_Receive_Response (See 8.4.)

The Final Destination controls the data flow with:

– Clear_To_Send (See 8.5.)

Data payloads for the read and write data
movements are carried in STUs. STUs are sent
with:

– Data (See 8.6.)

State information can be requested in a Data
Operation or with a Request_State Control
Operation.

– Request_State (See 8.7.)

– Request_State_Response (See 8.8.)

The Control Operations below may be used to
abort limited size Transfers. Unlimited size
Transfers shall use this method to signal the end
of the Transfer.

– End (See 8.9.)

– End_Ack (See 8.10.)

working draft - HIPPI-ST Rev 0.7, 6/5/97

9

4.4.2 Transfer identifiers (R_id and S_id)

Like the Ports and Keys, each end device shall
also select its own non-zero 16-bit Transfer
identifier (T_id) value for a data movement on
the Virtual Connection. For example, when end
device S requests to write to end device R, S
shall select the value for its T_id and shall send it
to R in the Request_To_Send Operation. R shall
store S's T_id value and shall return it to S in
most Operations concerning this Transfer.
Likewise, R shall select its T_id value and send it
to S in a Request_To_Send_Response or
Clear_To_Send Operation. For each Operation,
the sender shall put its T_id in the S_id field. The
sender shall put the receiver's T_id value in the
R_id field for all except Request_To_Receive and
Data Operations, in which case it shall put the
B_id value (see 4.4.3) in the R_id field.

NOTE – The Virtual Connection is symmetrical;
either end device may initiate a data movement.
For example, S could be end device A that initiated
the Virtual Connection setup, or it could be end
device B. Different names were used for clarity.

4.4.3 Block identifier (B_id)

Each Block of a Transfer may use a different 16-
bit Block identifier (B_id). B_id values shall be
selected by the Final Destination and passed to
the Originating Source in Request_To_Receive
and Clear_To_Send Operations. The associated
Data Operations shall echo the B_id value. Note
that the B_id parameter is used instead of the
R_id parameter in Request_To_Receive and
Data Operations.

4.4.4 Transfer length (T_len)

The 64-bit Transfer length parameter (T_len)
specifies the total number of data payload bytes
in the Transfer. T_len does not include the
Schedule Header or any lower-layer headers.
T_len = all zeros shall indicate an unlimited size
Transfer. An unlimited size Transfer is
terminated by an End Operation (see 8.9).

4.4.5 Blocks

Scheduled Transfer flow control, striping,
acknowledgments, and resource allocation are all
done on a Block basis. Block numbers (B_num)
shall be numbered starting at zero and shall
increment by one for each following Block.

Blocks comprising a Transfer shall be enabled for
transmission in sequential order unless both the
Originating Source and Final Destination
indicated Out_of_Order capability during the
Virtual Connection setup. Note that
Out_of_Order is necessary for selective
retransmission to correct flawed Blocks,
otherwise go-back-N retransmission must be
used.

Request_State_Response Operations indicate
the highest numbered Block received correctly by
the Final Destination. Request_State_Response
Operations can be requested by setting the
Send_State flag bit in Data Operations or by
sending Request_State Operations. In addition,
Request_State Operations can ask if a particular
Block was received correctly. Use of these
mechanisms allows the Originating Source to
verify correct reception and to identify flawed
Blocks for potential retransmission.

4.4.6 Block size

The Block size (the number of bytes in a Block)
for a Transfer is established when a Transfer is
initiated, i.e., with a
Request_To_Send_Response or Clear_To_Send
Operation (see 8.2 and 8.5). The Blocksize
parameter is expressed as a power of two, i.e.,
2Blocksize where 8 ≤ Blocksize ≤ 63. All of the
Blocks of a Transfer shall be full size, except for
the first and/or last Block of a Transfer which can
be smaller (the first Block will be smaller by the
initial Offset value, and the last Block will be
whatever completes the Transfer).

4.4.7 STUs

The STUs of a Block shall be transmitted in
order. STU numbers (S_count) shall start with
zero and increment by one for each following
STU. The last STU of a Block shall be marked
with Last = 1. No STU shall extend past a Final

working draft - HIPPI-ST Rev 0.7, 6/5/97

10

Destination's buffer boundary, Blocksize
boundary, or Transfer boundary.

4.4.8 Bufx and Offset

Bufx contains a Buffer Index. If more than one
Buffer Index is required for a Block, i.e., buffer
size (Bufsize) is less than Blocksize, then the
Bufx parameter in the Clear_To_Send Operation
shall specify the initial Bufx, and any additional
Bufx values shall be sequential.

Offset may be used to start at other than the first
byte of a Final Destination's buffer. For the first
STU of a Block, the Offset value shall be the
same as received in the Clear_To_Send for the
Block. Subsequent STUs of the Block shall
adjust the Bufx and Offset values based on the
Final Destination's buffer size and the STU size
used by the Originating Source.

The Offset value associated with the first block of
a Transfer (I_Offset) is included in all
Clear_To_Send Operations. This allows the
Originating Source to compute the starting
address for any Block without having received the
Clear_To_Send for the first Block.
Clear_To_Send Operations can occur out of
order, e.g., as the result of striping.

Best performance will usually be achieved when
an Offset value of zero is specified. Use of non-
zero offset values may degrade performance,
depending upon underlying hardware transfer
mechanisms.

4.4.9 OS_Bufx and OS_Offset

OS_Bufx specifies a Buffer Index. If more than
one Buffer Index is required for a Block, i.e.,
buffer size < Block size, then the OS_Bufx
parameter shall specify the initial Bufx, and any
additional Bufx values shall be sequential.

OS_Offset may be used to start at other than the
first byte of a Source buffer. Note that OS_Bufx
and OS_Offset are only used with
Request_To_Receive Operations, and Request
_To_Receive Operations only specify one Block.

4.4.10 Opaque data

Opaque data is eight bytes of ULP peer-to-peer
information carried in a Data Operation’s
Schedule Header OS_Bufx and OS_Offset fields.
The Opaque data shall be delivered to the Final
Destination’s ULP when Silent = 0 (see 6.2). The
Opaque data shall be passed unmodified from
the Originating Source to the Final Destination.
Note that the Opaque data uses Slot resources
while the data payload uses Bufx resources. The
Opaque data shall not be counted in the length,
tiling, or Bufx calculations.

working draft - HIPPI-ST Rev 0.7, 6/5/97

11

4.4.11 Packing examples

Figure 6 shows three possibilities for packing the
same Transfer into a receiver's buffers. All three
examples show a group of seven of the receiver's
buffers on the top line. Each buffer is pointed to
by a Bufx, and the data in the first buffer starts at
an Offset value. The Transfer is the shaded bar,
with transmission going from left to right. The
Block boundaries are shown above the shaded
bar, and the resulting STU boundaries are shown
below the shaded bar.

Example (a), at the top, shows the case where
the buffers and Blocks are the same size. Notice
that the first Block is smaller than the other
Blocks by the Offset value. Offset = zeros is
required for the other Blocks. The last Block of
the Transfer is also smaller, i.e., the Transfer did
not end on a Block boundary. While the STU
boundaries lined up nicely, the sender could have

used multiple STUs, but the STUs cannot be
larger than Max-STU.

Example (b) shows multiple Blocks per receiver
buffer. The Blocks that do not start on a buffer
boundary would use the Offset parameter to
position the data.

Example (c) shows the Block size covering two of
the receiver's buffers.

In summary, STUs cannot cross Block, buffer, or
Transfer boundaries. Relationships include:

STU size ≤ Max-STU size

Max-STU size ≤ Blocksize

Max-STU size ≤ Bufsize

Note that the Blocksize can be larger, smaller, or
the same as Bufsize.

(a) Receiver's buffers

Block boundaries

Transfer

Resulting STU boundaries

(b) Receiver's buffers

Block boundaries

Transfer

Resulting STU boundaries

(c) Receiver's buffers

Block boundaries

Transfer

Resulting STU boundaries

Offset

Offset

Offset

Figure 6 – Data packing examples

working draft - HIPPI-ST Rev 0.7, 6/5/97

12

4.5 Operations management

4.5.1 Flow control

Data flow control is achieved with Clear_To_Send
and Request_To_Receive Operations; each one
sent by the Final Destination gives the Originating
Source permission to send one Block. Flow
control is overridden when Persistent = 1; here
Data Operations may be sent without having first
received Clear_To_Send Operations.

Operation flow control is achieved by an
Operation's sender not overrunning the Slots
value (see 4.3.6).

4.5.2 Status Operations

Request_State (see 8.7) and
Request_State_Response (see 8.8) Operations
are used to request and supply status information
about the state of the remote end device. They
can be used to see which Blocks have been
received correctly and the number of empty Slots
available. The Sync parameter (see 4.3.6) is
used to provide a common reference point for the
local and remote end devices, i.e., to match
Request_State and Request_State_Response
Operations.

4.5.3 Rejected Operations

If the receiving end device is unable to execute
an Operation, then the receiving device shall set
the Reject flag bit = 1 in the response. Table 1
shows the response when an Operation is
rejected. The recovery actions taken when an
Operation is rejected are beyond the scope of this
standard.

Table 1 – Response to a rejected Operation

Rejected Operation Response (w/ Reject = 1)

Request_Port Request_Port_Response

Request_To_Send Request_To_Send_Response

Request_To_Receive Request_To_Receive_Response

4.5.4 Lost Operations

Errors other than syntactic errors are manifested
as missing Operations, which occur when the
underlying physical medium discards or damages
a transmission. Each Scheduled Transfer
Operation is defined as part of a two-way
handshake or a three-way handshake. Thus, for
each command Operation there is a
corresponding response Operation, and for some
response Operations there is also a
corresponding completion Operation.

Each Operation that expects a response is
guarded with a timeout whose value is referred
to as Op_timeout (see 9.1). An Operation shall
be re-tried up to Max_Retry times (see 9.1) if the
sending end device does not receive the
expected response (see 9.2 and table 5).

Data transmissions (i.e., Data Operations) are an
exception to this timeout mechanism and are
referred to the ULP for resolution (see 9.2).

4.5.5 Interrupts

An Interrupt causes a signal to be delivered to the
receiving end device ULP. An Interrupt can be
requested with any Operation by setting Interrupt
= 1.

working draft - HIPPI-ST Rev 0.7, 6/5/97

13

5 Service interface

This clause specifies the services provided by
HIPPI-ST. The intent is to allow ULPs to operate
correctly with this HIPPI-ST. How many of the
services described herein are chosen for a given
implementation is up to that implementor;
however, a sufficient set of HIPPI-ST services
must be supplied to satisfy the ULP(s) being
used. The services as defined herein do not
imply any particular implementation or any
interface.

Figure 7 shows the relationship of the HIPPI-ST
interfaces.

5.1 Service primitives

The primitives, in the context of the state tran-
sitions in clause 5, are declared required or
optional. Additionally, parameters are either
required, conditional, or optional. All of the
primitives and parameters are considered as
required except where explicitly stated otherwise.

HIPPI-ST service primitives are of four types.

– Request primitives are issued by a service
user to initiate a service provided by the HIPPI-
ST. In this standard, a second Request primi-
tive of the same name shall not be issued until
the Confirm for the first request is received.

–Confirm primitives are issued by the HIPPI-ST
to acknowledge a Request.

– Indicate primitives are issued by the HIPPI-ST
to notify the service user of a local event. This
primitive is similar in nature to an unsolicited
interrupt. Note that the local event may have
been caused by a service Request. In this
standard, a second Indicate primitive of the
same name shall not be issued until the
Response for the first Indicate is received.

– Response primitives are issued by a service
user to acknowledge an Indicate.

HIPPI-ST

Upper-layer
protocols

 (ST_...)

Station
management

(SMT)

 (SM_...)

Figure 7 – HIPPI-ST service interface

5.2 Sequences of primitives

The order of execution of service primitives is not
arbitrary. Logical and time sequence
relationships exist for all described service primi-
tives. Time sequence diagrams are used to illus-
trate a valid sequence. Other valid sequences
may exist. The sequence of events between peer
users across the user/provider interface is illus-
trated. In the time sequence diagrams, the
HIPPI-ST users are depicted on either side of the
vertical bars, while the HIPPI-ST acts as the
service provider.

NOTE - The intent is to flesh out the service primitives
similar to what is in HIPPI-PH today.

Service interface considerations -

(These are notes that have been collected during the
document reviews, and should be considered when the
service interface is written.)

Should there be a priority, or time-to-live, for
individual Transfers? On a per connection basis?

Pass the full ST header to/from the ULP.

Service the slots in order of arrival, i.e., FIFO.

Interrupts are passed independent of the Slots,
i.e., whenever an Interrupt is put in the Slots
queue.

There is a Port-basis for the Service Interface

working draft - HIPPI-ST Rev 0.7, 6/5/97

14

6 Schedule Header

The Schedule Header is shown in figure 8 as a
group of 32-bit words. The Schedule Header
fields are named for the most common parameter
for which the field is used. Many of the fields
have different uses depending on the Operation
type, and some Operations do not use one or
more of the fields at all. The usage for each field
is listed below and summarized in tables 2 and 3.

Bytes

Op Flags S_count 00-03

R_Port S_Port 04-07

Key 08-11

R_id S_id 12-15

Bufx 16-19

Offset 20-23

Sync 24-27

B_num 28-31

OS_Bufx 32-35

OS_Offset 36-39

Figure 8 – Schedule Header contents

6.1 Schedule Header fields

The Schedule Header fields shall be as follows.
If an Operation does not use a particular
Schedule Header field, then that field shall be
transmitted as zeros.

Op (5 bits, high-order 5 bits of byte 00) – The
Scheduled Transfer Operation. See tables 2
and 3 for a summary of Op values.
Unspecified Op values are reserved.

Flags (11 bits, low-order 3 bits of byte 00, and
all of byte 01) – Control flags (see 6.2).

S_count (16 bits, bytes 02-03):

– In Request_Port, Request_Port-
_Response, and Request_State_Response
Operations: the number of available Slots
(see 4.3.6);

– In Request_To_Send_Response and
Clear_To_Send Operations: the Blocksize
parameter (see 4.4.6);

– In Data Operations: the STU number (see
4.4.7).

R_Port (16 bits, bytes 04-05) – The receiver's
logical Port for this Operation (see 4.3.2).

S_Port (16 bits, bytes 06-07) – The sender's
logical Port for this Operation (see 4.3.2).

Key (32 bits, bytes 08-11) – Virtual Connection
identifier. Generated independently by each
end during the Virtual Connection setup. (See
4.3.3.)

R_id (16 bits, bytes 12-13)

– In Request_To_Send_Response, Request-
_To_Receive_Response, Clear_To_Send,
Request_State, Request_State_Response,
End, and End_Ack Operations: the
receiver's Transfer identifier for this
Operation (see 4.4.2).

– In Request_To_Receive and Data
Operations: the Final Destination's Block
identifier (B_id) for this Operation (see
4.4.3).

S_id (16 bits, bytes 14-15) – The sender's
Transfer identifier for this Operation (see 4.4.2).

Bufx (32 bits, bytes 16-19):

– In Request_Port and Request_Port_Re-
sponse Operations: the maximum buffer
size (Bufsize) supported by the end device
(see 4.3.4);

– In Request_To_Receive, Clear_To_Send,
and Data Operations: the Buffer Index at the
Final Destination (see 4.4.8).

Offset (32 bits, bytes 20-23):

– In Request_Port and Request_Port_Re-
sponse Operations: the sender's Key value
(see 4.3.3);

– In Request_To_Receive, Clear_To_Send,
and Data Operations: the Final Destination's
Offset within a Bufx (see 4.4.8);

– In Request_State_Response Operations:
the Block number of the highest numbered
contiguous Block received correctly (see
4.4.5).

Sync (32 bits, bytes 24-27):

– In Request_Port and Request_Port_Re-
sponse Operations: the Max-STU size (see
4.3.5);

working draft - HIPPI-ST Rev 0.7, 6/5/97

15

– In Request_To_Send and
Request_To_Receive Operations: the high-
order portion of the length, in bytes, of the
Transfer data (see 4.4.4);

– In Clear_To_Send Operations: the high-
order 16 bits shall be transmitted as zeros
and the low-order 16 bits shall contain the
Block identifier (B_id) (see 4.4.3).

– In Data, Request_State, and
Request_State_Response Operations: the
Sync parameter (see 4.3.6).

B_num (32 bits, bytes 28-31):

– In Request_Port Operations: the
EtherType parameter (see 4.3.2);

– In Request_To_Send, Request_To_Send
_Response, and Request_To_Receive
Operations: the low-order portion of the
length, in bytes, of the Transfer data (see
4.4.4);

– In Clear_To_Send and Data Operations:
the Block number being requested or
transmitted (see 4.4.5);

– In Request_State and
Request_State_Response Operations: the
Block number being queried or responded to
(see 4.4.5, 8.7, and 8.8).

OS_Bufx (32 bits, bytes 32-35):

– In Request_To_Receive Operations: the
Buffer Index at the Originating Source (see
4.4.9);

– In Data Operations: Opaque data (see
4.4.10).

OS_Offset (32 bits, bytes 36-39):

– In Request_To_Receive Operations: the
Originating Source's Offset within a Bufx
(see 4.4.9);

– In Clear_To_Send Operations: the Final
Destination's initial Offset value (see 4.4.8);

– In Data Operations: Opaque data (see
4.4.10).

6.2 Scheduled Transfer flags

Figure 9 summarizes the flags, and shows their
relative position. The flag functions are detailed
below for the case where the bit = 1.

TOOp bits I S 0 0 P L R D

Out_of_Order
Silent
Interrupt
Send_State
Reserved
Reserved
Persistent
Last
Reject
Data Channel assignment

Byte 0 Byte 1

Figure 9 – Flags summary

Out_of_Order (b'1xxxxxxxxxx') = The end
device is able to send and receive Blocks in
any order.

Silent (b'x1xxxxxxxxx') = Requests silent
delivery of a Data Operation. For Control
Operations the Silent flag shall be ignored (i.e.,
transmitted as zero, but not checked at the
receiver). For Data Operations with Silent = 1
the data transfer to the Destination Bufx is
carried out normally, but the Schedule Header
shall not be delivered to any upper-layer entity.
This provides the basis for remote memory
write semantics where the intent is to modify
the contents of a remote memory without
executing software in the Destination host
computer.

Interrupt (b'xx1xxxxxxxx') = Requests that a
signal or interrupt be generated and delivered
to the appropriate upper-layer entity. The
Interrupt flag is independent of the Silent flag,
i.e., Interrupt = 1 calls for a signal whether or
not Silent = 1. (See 4.5.5.)

NOTE 1 – The Silent and Interrupt flags together
provide for three delivery modes for Data
Operations: silent, polled, or interrupt-driven. If
Silent = 1, the data payloads are delivered silently.
If Silent = 0, then the upper-layer entity is informed
by the same means used for all other Schedule
Headers. This mode is suitable for polled

working draft - HIPPI-ST Rev 0.7, 6/5/97

16

interfaces. If Interrupt = 1, then a signal is
delivered.

Send_State (b'xxx1xxxxxxx') = Requests that
the Final Destination respond with a
Request_State_Response upon successful
receipt of this STU, or Operation, by the higher-
layer protocol. Send_State is always valid on
Control Operations. For Send_State to be valid
on a Data Operation, either Interrupt = 1 or
Silent = 0 must be true.

Reserved (b'xxxx00xxxxx') = The reserved flag
bits shall be transmitted as zeros.

Persistent (b'xxxxxx1xxxx') = Retain the Final
Destination's buffers (see 4.3.7).

Last (b'xxxxxxx1xxx') = The last STU of a
Block.

Reject (b'xxxxxxxx1xx') = The request (i.e.,
Request_Port, Request_To_Send, or
Request_To_Receive) has been rejected.

Data Channel assignment: The Data Channel
to be used to carry Data Operations. The Data
Channel value is assigned in a
Request_To_Send Operation and is the Data
Channel to be used for Data Operations
associated with this Transfer.

b'xxxxxxxxx01' = Data Channel 1
b'xxxxxxxxx10' = Data Channel 2
b'xxxxxxxxx11' = Data Channel 3

The maximum STU size sent on Data Channels
1 and 2 shall be 217 bytes (i.e., 128 Kbytes).
The maximum STU size sent on Data Channel
3 shall be 231 bytes (i.e., 2 gigabytes).

NOTE 2 – Data Channel assignment value b'00' is
reserved.

7 Virtual Connection management

In this clause, a Virtual Connection is set up
between two Ports (see 4.3.2), called the A-Port
and B-Port. The device that initiates the Virtual
Connection is called device A, and the device at
the other end is called device B.

In addition to the Port values, each Port shall
assign and associate a Key value (A-Key and B-
Key) with the Virtual Connection (see 4.3.3).
Other parameters exchanged during the Virtual

Connection setup include Buffer sizes (A-Bufsize
and B-Bufsize, see 4.3.4), maximum STU sizes
(Max-STU, see 4.3.5), and the number of
available Slots (A-Slots and B-Slots, see 4.3.6).
The end devices also inform each other of their
capability to support Persistent (see 4.3.7), and
out-of-order Block delivery (see 4.4.5).

The Operations used to set up and tear down
Virtual Connections are detailed below and
summarized in table 2. Only the fields used in
each Operation are listed; all of the other
Schedule Header fields shall be transmitted as
zeros. While a particular field usually carries the
parameter of the same name, fields sometimes
carry other parameter values. In the Operations
below, the specific parameter used in the
Operation is listed first, and if it is not carried in
the field of the same name, then the field name is
included in square brackets.

7.1 Request_Port

Request_Port shall be used to set up a Virtual
Connection between end device A and end
device B.

Semantics – Request_Port (
Op,
Flags,
A-Slots [S_count],
B-Port [R_Port],
A-Port [S_Port],
A-Bufsize [Bufx],
A-Key [Offset],
A-Max-STU [Sync],
EtherType [B_num])

Op = x'01'

Flags (see 6.2) shall specify the Out_of_Order
and Persistent flags. A value of 1 shall indicate
that A supports that feature. The appropriate
value for the Interrupt flag shall also be carried
(see 4.5.5).

A-Slots, carried in the S_count field, shall
specify the maximum number of Slots allocated
in A for this Virtual Connection (see 4.3.6).

B-Port, carried in the R_Port field, shall specify
B's logical Port value for this Virtual
Connection. B-Port may be either the well-
known Port (B will assign the Port value), or a
peer Port, that provides the service (see 4.3.2).

working draft - HIPPI-ST Rev 0.7, 6/5/97

17

A-Port, carried in the S_Port field, shall specify
A's logical Port value for this Virtual Connection
(see 4.3.2).

A-Bufsize, carried in the Bufx field, shall specify
A's buffer size (see 4.3.4).

A-Key, carried in the Offset field, shall specify
A's Key value for this Virtual Connection (see
4.3.3).

A-Max-STU, carried in the Sync field, shall be
≤ A-Bufsize when sent by A (see 4.3.5). The A-
Max-STU value received by B shall be used by
B as the maximum size of STUs (Max-STU) to
be sent from B to A on this Virtual Connection.
(See 4.3.5.)

EtherType, carried in the B_num field, shall be
a value that characterizes the ULP data
payloads that will be exchanged on this Virtual
Connection (see 4.3.2).

Issued – By device A.

Effect – If it accepts the request, then end device
B shall establish a Virtual Connection and shall
reply with a Request_Port_Response Operation.
If rejected, then end device B shall respond with
Reject = 1 in the Request_Port_Response (see
4.5.3).

7.2 Request_Port_Response

Request_Port_Response shall inform end device
A whether the Virtual Connection was accepted or
not. If accepted, the parameters associated with
this Virtual Connection are passed to A.

Semantics – Request_Port_Response (
Op,
Flags,
B-Slots [S_count],
A-Port [R_Port],
B-Port [S_Port],
A-Key [Key],
B-Bufsize [Bufx],
B-Key [Offset],
B-Max-STU [Sync])

Op = x'02'

Flags (see 6.2) shall specify the Out_of_Order
and Persistent flags. A value of 1 shall indicate
that B supports that feature. The appropriate
value for the Reject and Interrupt flags shall

also be carried (see 4.5.3 and 4.5.5).

B-Slots, carried in the S_count field, shall
specify the maximum number of Slots allocated
in B for this Virtual Connection (see 4.3.6).

A-Port, carried in the R_Port field, shall be the
same as the A-Port value in the Request_Port
Operation (see 4.3.2).

B-Port, carried in the S_Port field, shall specify
B's logical Port value for this Virtual Connection
(see 4.3.2).

A-Key, carried in the Key field, shall be the Key
value assigned by A in the Request_Port
Operation (see 4.3.3).

B-Bufsize, carried in the Bufx field, shall specify
B's buffer size (see 4.3.4).

B-Key, carried in the Offset field, shall specify
B's Key value assigned for this Virtual
Connection (see 4.3.3).

B-Max-STU, carried in the Sync field, shall be
≤ B-Bufsize when sent by B (see 4.3.5). The B-
Max-STU value received by A shall be used by
A as the maximum size of STUs (Max-STU) to
be sent from A to B on this Virtual Connection.
(See 4.3.5.)

Issued – By B in response to a Request_Port.

Effect – End device A has been assigned a
logical Port on end device B. The Ports, Keys,
buffer sizes, maximum STU size, and maximum
number of Slots have been exchanged, and a
Virtual Connection has been established. Note
that the Virtual Connection is bi-directional in that
either A or B may initiate a Scheduled Transfer.
Multiple Scheduled Transfers may occur over a
single Virtual Connection, and the Scheduled
Transfers can be either writes or reads.

7.3 Port_Teardown

Port_Teardown shall terminate the Virtual
Connection and may be issued by either end
device A or end device B. The Port_Teardown
sequence uses a three-way handshake consisting
of Port_Teardown, Port_Teardown_Ack, and
Port_Teardown_Complete that decreases timeout
dependency for releasing resources.

working draft - HIPPI-ST Rev 0.7, 6/5/97

18

Open Issue – A state table describing the 3-way
handshake will be included in a Normative annex.

Semantics – Port_Teardown (
Op,
Flags,
R_Port,
S_Port,
Key)

Op = x'03'

Flags shall contain the appropriate value for the
Interrupt flag (see 4.5.5).

R_Port shall contain the value associated with
the receiver of the Operation, e.g., R_Port = B-
Port when the Port_Teardown is issued by A
(see 4.3.2).

S_Port shall contain the value associated with
the sender of the Operation, e.g., S_Port = A-
Port when the Port_Teardown is issued by A
(see 4.3.2).

Key shall contain the Key value associated with
the receiver of the Operation, e.g., Key = B-Key
when the Port_Teardown is issued by A (see
4.3.3).

Issued – By either side, i.e., end device A or end
device B, of the Virtual Connection. The sender
should only issue a Port_Teardown when the
Transfers are complete or appear to be stalled.

Effect – The receiver should release any buffers
associated with this Virtual Connection, but shall
retain the Port and Key values for use in further
Port_Teardown Operations. The receiver shall
also respond with a Port_Teardown_Ack.

7.4 Port_Teardown_Ack

Port_Teardown_Ack shall be used to
acknowledge receipt of a Port_Teardown.

Semantics – Port_Teardown_Ack (
Op,
Flags,
R_Port,
S_Port,
Key)

Op = x'04'

Flags shall contain the appropriate value for the
Interrupt flag (see 4.5.5).

R_Port shall contain the value associated with
the receiver of the Operation, e.g., R_Port = B-
Port when the Port_Teardown_Ack is issued by
A (see 4.3.2).

S_Port shall contain the value associated with
the sender of the Operation, e.g., S_Port = A-
Port when the Port_Teardown_Ack is issued by
A (see 4.3.2).

Key shall contain the Key value associated with
the receiver of the Operation, e.g., Key = B-Key
when the Port_Teardown_Ack is issued by A
(see 4.3.3).

Issued – By the receiver of a Port_Teardown
Operation after releasing this Virtual Connection's
buffers.

Effect – The receiver should release any buffers
associated with this Virtual Connection, but shall
retain the Port and Key values for use in further
Port_Teardown Operations. The receiver shall
also respond with a Port_Teardown_Complete.

7.5 Port_Teardown_Complete

Port_Teardown_Complete shall be used to
complete a three-way handshake, acknowledging
that the actions associated with a Port_Teardown
have been completed.

Semantics – Port_Teardown_Complete (
Op,
Flags,
R_Port,
S_Port,
Key)

Op = x'05'

Flags shall contain the appropriate value for the
Interrupt flag (see 4.5.5).

R_Port shall contain the value associated with
the receiver of the Operation, e.g., R_Port = B-
Port when the Port_Teardown_Complete is
issued by A (see 4.3.2).

S_Port shall contain the value associated with
the sender of the Operation, e.g., S_Port = A-
Port when the Port_Teardown_Complete is
issued by A (see 4.3.2).

working draft - HIPPI-ST Rev 0.7, 6/5/97

19

Key shall contain the Key value associated with
the receiver of the Operation, e.g., Key = B-Key
when the Port_Teardown_Complete is issued
by A (see 4.3.3).

Issued – By the receiver of a Port_Teardown_Ack
Operation.

Effect – After the Op_timeout expires twice, both
the sender and receiver shall release the Virtual
Connection's Port and Key values. The delay
allows for lost or damaged Port_Teardown
Operations to be re-issued.

8 Data movement

The Operations used for Scheduled Transfers are
detailed below and summarized in table 3. All of
the Scheduled Transfer data transfer Operations
use the R_Port, S_Port, A-Key, and B-Key values
that were assigned during the Virtual Connection
setup (see 7.1 and 7.2). When end device A
issues the Operation:

R_Port = B-Port
S_Port = A-Port
Key = B-Key

Likewise, when end device B issues the
Operation:

R_Port = A-Port
S_Port = B-Port
Key = A-Key

For clarity and brevity, these values are not
discussed in the individual Operations. All other
Schedule Header fields that are not listed in a
specific Operation shall be transmitted as zeros.
While a particular field usually carries the
parameter of the same name, fields sometimes
carry other parameter values. In the Operations
below, the specific parameter used in the
Operation is listed first, and if it is not carried in
the field of the same name, then the field name is
included in square brackets.

8.1 Request_To_Send

Request_To_Send asks that space be allocated,
and authorization be given, for a Transfer.
Request_To_Send is issued by the Originating

Source to specify the number of data bytes to be
sent from the Originating Source to the Final
Destination. In addition, the Originating Source
shall specify whether 64-bit address or Buffer
Indexes are used, whether the Final Destination's
buffer should be persistent or discarded after a
Block, and the Data Channel assignment for the
data transfer. Note that the end device on either
end of the Virtual Connection may issue a
Request_To_Send. A Request_To_Send, with
Persistent = 1, is also used to set up and expose
memory for Request_To_Receive Operations.

Semantics – Request_To_Send (
Op,
Flags,
R_Port,
S_Port,
Key,
S_id,
T_len [Sync,B_num])

Op = x'16'

Flags (see 6.2) shall specify the Persistent, and
Data Channel assignment flags. Persistent
shall only = 1 if the corresponding flag was set
= 1 by the other end during the Virtual
Connection setup (see 7.1 and 7.2) and the
function is desired for this Operation. The
appropriate value for the Interrupt flag shall
also be carried (see 4.5.5).

S_id shall be the Originating Source's Transfer
identifier (see 4.4.2) used to identify this
Transfer. The Final Destination shall use this
value as the R_id parameter when replying to
the Originating Source concerning this
Transfer.

T_len, carried in the concatenation of the Sync
and B_num fields, shall specify the total
number of data payload bytes in the Transfer or
that the size of the Transfer is unlimited (see
4.4.4).

Issued – By the Originating Source after a Virtual
Connection has been established.

Effect – If rejected, the Final Destination will
respond with a Request_To_Send_Response
(see 8.2) with Reject = 1. If accepted, the Final
Destination will respond with a
Request_To_Send_Response with Reject = 0. If
accepted, the Final Destination will set up its

working draft - HIPPI-ST Rev 0.7, 6/5/97

20

memory region for the Transfer and respond with
one or more Clear_To_Send Operations (see 8.5)
when the memory region is ready. The Final
Destination may omit sending the
Request_To_Send_Response if the
Clear_To_Send Operation can be returned before
the timeout (see 9.1) on the Request_To_Send
Operation expires.

8.2 Request_To_Send_Response

Request_To_Send_Response shall inform the
Originating Source whether the Transfer was
accepted or not. If accepted, the Request_To_
Send_Response specifies the Transfer identifier
(see 4.4.2) assigned by this end (i.e., the Final
Destination) for this Transfer and the number of
STUs per Block (see 4.4.7). A
Request_To_Send_Response does not give the
Originating Source permission to start sending;
that comes from a Clear_To_Send. A
Clear_To_Send may be used instead of a
Request_To_Send_Response if the Final
Destination is able to immediately accept the
data.

Semantics – Request_To_Send_Response (
Op,
Flags,
Blocksize [S_count],
R_Port,
S_Port,
Key,
R_id,
S_id)

Op = x'17'

Flags (see 6.2) shall specify the Reject and
Interrupt flags (see 4.5.3 and 4.5.5).

Blocksize, carried in the S_count field, shall
specify the Block size (see 4.4.6).

R_id shall be the Transfer identifier (see 4.4.2)
assigned by the Originating Source in the
Request_To_Send Operation.

S_id shall be the Transfer identifier (see 4.4.2)
used by the Final Destination to identify this
Transfer. The Originating Source shall use this
value as the R_id parameter when replying to
the Final Destination concerning this Transfer.

Issued – By the Final Destination.

Effect – The Originating Source shall segment
the Transfer into Blocks and STUs for
transmission.

8.3 Request_To_Receive

Request_To_Receive, issued by the Final
Destination (the initiator), asks for a single Block
of data to be sent from a previously allocated
location in the Originating Source. The
Request_To_Receive specifies the number of
data bytes to be sent from the Originating Source
to the Final Destination. A Request_To_Receive
transfers a single Block; there is no notion of a
multi-Block Request_To_Receive data
movement.

When a Request_To_Receive is issued, it is
assumed that the ULPs on both end devices had
previously allocated resources for the entire
Transfer through a previous Request_To_Send
Operation. Note that the device at either end of
the Virtual Connection may issue a
Request_To_Receive.

Request_To_Receive may be used in conjunction
with Persistent memory. The
Request_To_Receive initiator must first request a
remote Persistent memory region by issuing a
Request_To_Send Operation with Persistent = 1.
The following associated Clear_To_Send
Operation, and possibly
Request_To_Send_Response Operation (see
8.1), establish an R_id / S_id pair which together
identify the Transfer. The persistent memory for
the Transfer remains available until the Transfer
is terminated by either an End / End_Ack
exchange or Port_Teardown sequence.

 If accepted, an (optional) Request_To_Send-
_Response will be returned with Persistent = 1.
This will be followed by a Clear_To_Send
Operation which establishes the memory region
dedicated for the Transfer. The
Request_To_Send / Clear_To_Send handshake
establishes an R_ID, S_ID pair which together
identify the "Transfer". The Persistent memory
for the Transfer remains available until the
Transfer is terminated by either an End/End_Ack
exchange or Port_Teardown sequence.

While a Persistent Transfer is active, it is
available for an unlimited number of Data

working draft - HIPPI-ST Rev 0.7, 6/5/97

21

Operations or Request_To_Receive Operations
as long as the number of outstanding Operations
at any time falls within the limits established by
the Slot mechanism (section 4.3.6).

Semantics – Request_To_Receive (
Op,
Flags,
R_Port,
S_Port,
Key,
R_id,
S_id,
Bufx,
Offset,
T_len [Sync,B_num],
OS_Bufx,
OS_Offset)

Op = x'18'

Flags (see 6.2) shall specify the Interrupt flag
(see 4.5.5).

B_id shall be the Block identifier (see 4.4.3)
being assigned by this Operation. B_id shall be
placed in the low-order 16 bits of the Sync field;
the high-order bits shall be transmitted as
zeros.

S_id shall be the Transfer identifier (see 4.4.2)
used by the Final Destination to identify this
Transfer. The Originating Source shall use this
value as the R_id parameter when replying to
the Final Destination concerning this Transfer.

Bufx shall specify the initial Buffer Index in the
Final Destination where the data will be placed
(see 4.4.8).

Offset is a value that the Final Destination must
receive with the first STU of the Block so that
the data can be properly placed in the Final
Destination's memory (see 4.4.8).

T_len, carried in the concatenation of the Sync
and B_num fields, shall specify the total
number of data payload bytes in the Transfer
(see 4.4.4).

OS_Bufx shall specify the Originating Source's
Buffer Index (see 4.4.9).

OS_Offset shall specify the Originating
Source's offset value (see 4.4.9).

Issued – By the Final Destination.

Effect – If accepted, the Originating Source shall
send the specified Block of data. If rejected, the
Originating Source shall reply with Reject = 1 in a
Request_To_Receive_Response (see 4.5.3).

8.4 Request_To_Receive_Response

Request_To_Receive_Response, may be issued
by the Originating Source in response to a
Request_To_Receive Operation. The Originating
Source may omit sending the
Request_To_Receive_Response if the associated
Data Operation can be returned before the
timeout (see 9.1) on the Request_To_Receive
Operation expires.

Semantics – Request_To_Receive_Response (
Op,
Flags,
R_Port,
S_Port,
Key,
R_id,
S_id)

Op = x'19'

Flags (see 6.2) shall specify the Reject and
Interrupt flags.

R_id shall be the Transfer identifier (see 4.4.2)
assigned by the Originating Source in the
Request_To_Send Operation.

S_id shall be the Transfer identifier (see 4.4.2)
used by the Final Destination to identify this
Transfer.

Issued – By the Originating Source.

Effect – The Request_To_Receive Operation has
been rejected (see 4.5.3), or the associated Data
Operation will be delayed.

8.5 Clear_To_Send

Clear_To_Send shall be used to give the
Originating Source permission to send one Block.
Clear_To_Send may also be used to request
retransmission of a Block from systems that are
capable of retransmission.

working draft - HIPPI-ST Rev 0.7, 6/5/97

22

Semantics – Clear_To_Send (
Op,
Flags,
Blocksize [S_count],
R_Port,
S_Port,
Key,
R_id
S_id,
Bufx,
Offset,
B_id [*,Sync],
B_num,
I_Offset [OS_Offset])

Op = x'1A'

Flags (see 6.2) shall specify the Interrupt flag
(see 4.5.5).

Blocksize, carried in the S_count field, shall
specify the Block size (see 4.4.6).

R_id shall be the Transfer identifier (see 4.4.2)
assigned by the remote end (the Originating
Source) of the Virtual Connection.

S_id shall be the Transfer identifier (see 4.4.2)
assigned by this end (the Final Destination) of
the Virtual Connection.

Bufx shall specify the initial Buffer Index in the
Final Destination where the data will be placed
(see 4.4.8).

Offset is a value that the Final Destination must
receive with the first STU of a Block so that the
data can be properly placed in the Final
Destination's memory (see 4.4.8).

B_id shall be the Block identifier (see 4.4.3)
being assigned by this Operation for this Block
of the Transfer. B_id shall be placed in the low-
order 16 bits of the Sync field; the high-order
bits shall be transmitted as zeros.

B_num shall be the Block number being given
permission to be transmitted (see 4.4.5).

I_Offset, carried in the OS_Offset field, shall
specify the Offset value associated with the first
Block of the Transfer (see 4.4.8).

Issued – By the Final Destination.

Effect – The Originating Source shall send the
specified Block.

8.6 Data

A Data Operation sends an STU of a Block from
the Originating Source to the Final Destination.
No STU shall be larger than the maximum STU
size determined during the Virtual Connection
setup (see 7.2).

Semantics – Data (
Op,
Flags,
S_count,
R_Port,
S_Port,
Key,
B_id,
S_id,
Bufx,
Offset,
Sync,
B_num,
Opaque [OS_Bufx],
Opaque [OS_Offset])

Op = x'1B'

Flags (see 6.2) shall specify the Interrupt,
Silent, Send_State, Last, and Data Channel
assignment flags (see 6.2). Send_State may
be sent with any STU of a Block. The
Request_State_Response Control Operation
associated with this request shall be issued
after processing this STU when Send_State =
1. The sender shall copy (in this Data
Operation) the Data Channel assignment flags
supplied in the corresponding
Request_To_Send Operation; the value is a do
not care at the receiver.

S_count shall be the STU number (see 4.4.7).

B_id shall be the Block identifier (see 4.4.3)
assigned by the other end (the Final
Destination) of the Virtual Connection.

S_id shall be the Transfer identifier (see 4.4.2)
assigned by this end of the Virtual Connection.
Note that if this is the first STU associated with
a Request_To_Receive Operation, then this
Transfer identifier (see 4.4.2) is being assigned
by the Originating Source and shall be used by
the Final Destination as the R_id parameter
when replying to the Originating Source
concerning this Transfer.

Bufx shall be the Buffer Index at the Final
Destination (see 4.4.8).

working draft - HIPPI-ST Rev 0.7, 6/5/97

23

Offset shall be the Final Destination's offset
within a Bufx (see 4.4.8).

Sync shall be a value assigned by the
Originating Source to synchronize the current
view of the number of empty Slots in the Final
Destination (see 4.3.6).

B_num shall be the number of the Block that
this STU is a part of.

Opaque data, carried in the OS_Bufx and
OS_Offset fields, shall be as specified in
4.4.10.

Issued – By the Originating Source.

Effect – The Final Destination shall place the
STU data in the memory area pointed to by Bufx
and offset by the Offset value. The Final
Destination shall only accept data into pre-
allocated buffer regions. The Final Destination is
responsible for ensuring that all of the Blocks of a
Transfer are received. The actions to be taken if
a Block is missing are beyond the scope of this
standard.

8.7 Request_State

Request_State is used to request that the remote
end device provide its current number of empty
Slots for Schedule Headers, the Block number
associated with the last set of contiguously good
data received, and whether the named Block was
received correctly.

Semantics – Request_State (
Op,
Flags,
R_Port,
S_Port,
Key,
R_id,
S_id,
Sync,
B_num)

Op = x'1C'

Flags shall contain the appropriate value for the
Interrupt flag (see 4.5.5).

R_id shall be the Transfer identifier (see 4.4.2)
assigned by the remote end device of this
Virtual Connection. R_id = x'0000' means that

the receiver shall not look for a current Transfer
and only return the current number of empty
Slots for this Virtual Connection.

S_id shall be the Transfer identifier (see 4.4.2)
assigned by this end of the Virtual Connection.
If R_id = x'0000', then S_id shall also be
x'0000'.

Sync shall be a value assigned by the local end
device (sender) to synchronize the current view
of the number of empty Slots in the remote end
device (receiver). (See 4.3.6.)

B_num shall indicate the Block number being
queried. B_num = x'FFFFFFFF' indicates that
the sender does not care about the status of
any particular Block.

Issued – By an end device that needs state
information from the remote end device of the
Virtual Connection. The sender may not have
received the Request_State_Response that it
expected from a Data Operation and can send a
Request_State to recover from a lost or damaged
Request_State_Response.

Effect – The receiver shall reply with a
Request_State_Response.

8.8 Request_State_Response

Request_State_Response shall be used to
indicate the number of empty Slots in this Port of
the Virtual Connection (see 4.3.6).
Request_State_Response may also indicate the
highest numbered contiguous Block received
correctly and whether the Block indicated in the
B_num parameter was received correctly (see
4.5.2).

Semantics – Request_State_Response (
Op,
Flags,
C-Slots [S_count],
R_Port,
S_Port,
Key,
R_id,
S_id,
B_seq [Offset],
Sync,
B_num)

working draft - HIPPI-ST Rev 0.7, 6/5/97

24

Op = x'1D'

Flags (see 6.2) shall specify the Interrupt flag
(see 4.5.5).

C-Slots, carried in the S_count field, shall
indicate the sender's view of the number of
empty Slots it has available for additional
Operations on this Virtual Connection. (See
8.6.) C-Slots = x'FFFF' (i.e., -1) shall indicate
that this end device does not implement the
Slots mechanism for Operations flow control.

R_id shall echo the S_id value in the
Request_State or Data Operation that triggered
this Request_State_Response.

S_id shall echo the R_id value in the
Request_State or Data Operation that triggered
this Request_State_Response. S_id = x'0000'
shall mean that the B_seq and B_num
parameters are meaningless.

B_seq, carried in the Offset field, shall indicate
the highest numbered contiguous Block
received correctly. B_seq = x'FFFFFFFF' shall
indicate that no Transfers are in progress or no
Blocks have been received.

Sync is echoed from the Request_State, or
Data Operation with Send_State = 1, that
initiated this Request_State_Response
Operation (see 4.3.6).

B_num shall echo the Block number, carried in
the B_num field of the Data Operation or the
Request_State Operation, if the indicated Block
was received correctly. If the indicated Block
has not been correctly received, then B_num
shall contain x'FFFFFFFF'. The Sync value
can be used by the receiving end to identify the
Operation containing the B_num being queried.

Issued – It is intended that a
Request_State_Response be issued by an end
device's ULP after receiving Send_State = 1 in a
Data Operation, or after receiving a
Request_State Operation, or to reject an
Operation.

Effect – State information is passed to the other
end of the Virtual Connection.

8.9 End

End allows either end of the Virtual Connection to
terminate a Scheduled Transfer before it has
completed and to terminate a Scheduled Transfer
of unlimited size.

Semantics – End (
Op,
Flags,
R_Port,
S_Port,
Key,
R_id
S_id)

Op = x'1E'

Flags shall contain the appropriate value for the
Interrupt flag (see 4.5.5).

R_id shall be the Transfer identifier (see 4.4.2)
assigned by the other end of the Virtual
Connection.

S_id shall be the Transfer identifier (see 4.4.2)
assigned by this end of the Virtual Connection.
This S_id value shall not be reused until an
End_Ack is received.

Issued – By the Originating Source or the Final
Destination.

Effect – A Final Destination receiving an End
shall stop sending Control Operations associated
with this Scheduled Transfer. An Originating
Source receiving an End shall stop sending
Control Operations and STUs associated with this
Scheduled Transfer. An End kills a Scheduled
Transfer, but shall not affect the Virtual
Connection carrying the Scheduled Transfer.

working draft - HIPPI-ST Rev 0.7, 6/5/97

25

Table 2 – Virtual Connection Operations summary between end devices A and B

Op Flags S_count R_Port S_Port Key Bufx Offset Sync B_num

RQP x'01' OIP A-Slots B-Port A-Port * A-Bufsize A-Key A-Max-STU EtherType

RQPR x'02' OIPR B-Slots A-Port B-Port A-Key B-Bufsize B-Key B-Max-STU *

PT x'03' I * R_Port S_Port R-Key * * * *

PTA x'04' I * R_Port S_Port R-Key * * * *

PTC x'05' I * R_Port S_Port R-Key * * * *
NOTES –

1 – Operation abbreviations:
PT = Port_Teardown
PTA = Port_Teardown_Ack
PTC = Port_Teardown_Complete
RQP = Request _Port
RQPR = Request_Port_Response

2 – Flag abbreviations are: O = Out_of_Order, I = Interrupt, P = Persistent, R = Reject
3 – R-Key = Key value the receiver binds to, e.g., R-Key = A-Key when Operation issued by device B.
4 – R_Port = Port number in device receiving the Operation, e.g., R_Port = A-Port when issued by device B.
5 – S_Port = Port number in device sending the Operation, e.g., S_Port = B-Port when issued by device B.
6 – The Schedule Header fields that are not shown shall be transmitted as zeros.

SYMBOLS -
* = Unused value, transmit as 0
Values in bold italics are assigned by the specific Operation and may be used by later Operations

8.10 End_Ack

End_Ack confirms that the sending end device
has seen and acted on the End.
Semantics – End_Ack (

Op,
Flags,
R_Port,
S_Port,
Key,
R_id,
S_id)

Op = x’1F’

Flags shall contain the appropriate value for the
Interrupt flag (see 4.5.5).

R_id shall be the Transfer identifier (see 4.4.2)
assigned by the remote end device of this
Virtual Connection.

S_id shall be the Transfer identifier (see 4.4.2)
assigned by this end of the Virtual Connection.
This S_id value should not be immediately
reused to avoid aliasing.

Issued – By the end of the Virtual Connection that
received the End Operation.

Effect – Acknowledgment that the Scheduled
Transfer has been terminated.

working draft - HIPPI-ST Rev 0.7, 6/5/97

26

Table 3 – Data transfer and status Operations summary between end devices S and R

Op Flags S_count R_id S_id Bufx Offset Sync B_num OS_Bufx OS_Offset

RTS x'16' IPD * * S_id * * T_len * *

RTSR x'17' IR Blocksize R_id S_id * * * * * *

RTR x'18' I * B_id S_id Bufx Offset T_len OS_Bufx OS_Offset

RTRR x'19' IR * R_id S_id * * * * * *

CTS x'1A' I Blocksize R_id S_id Bufx Offset *, B_id B_num * I_Offset

Data x'1B' ITSLD S_count B_id S_id Bufx Offset Sync B_num Opaque

RS x'1C' I * R_id S_id * * Sync B_num * *

RSR x'1D' IR C-Slots R_id S_id * B_seq Sync B_num * *

End x'1E' I * R_id S_id * * * * * *

EndA x’1F’ I * R_id S_id * * * * * *
NOTES –

1 – Operation abbreviations:
CTS = Clear_To_Send
EndA = End_Ack
RS = Request_State
RSR = Request_State_Response
RTR = Request_To_Receive
RTRR = Request_To_Receive_Response
RTS = Request_To_Send
RTSR = Request_To_Send_Response

2 – Flag abbreviations : I = Interrupt, T = Silent, S = Send_State, P = Persistent, L = Last STU of Block,
R = Reject, D = Data Channel assignment

3 – R_id = Transfer identifier in device receiving the Operation, e.g., R_id = G_id when issued by device H.
4 – S_id = Transfer identifier in device sending the Operation, e.g., S_id = H_id when issued by device H.
5 – Schedule Header parameters that shall be transmitted as assigned in RQP and RQPR Operations:

R_Port = Port number of the device receiving the Operation
S_Port = Port number of the device sending the Operation
Key = Key value assigned by the device receiving the Operation

SYMBOLS -
* = Unused value, transmit as 0
Values in bold italics are assigned by the specific Operation and may be used by later Operations

working draft - HIPPI-ST Rev 0.7, 6/5/97

27

9 Error processing

Table 5 is a summary of the logged errors. The
logging is on a per-Port basis, and shall be
available to the ULP that is using the Port. The
nature and size of the logs are system
dependent.

9.1 Operation timeout

Errors other than syntactic errors are manifested
as missing Operations, occurring when the
underlying physical media discard or damage a
transmission (see 4.5.4). Such errors are
detected by Op_timeout, which is system and/or
Port dependent. Op_timeout_Occurances shall
be logged. Example means for determining the
Op_timeout value for a Virtual Connection
include:

– a time longer than the measured round-trip
time through the software path (use a
Request_State / Request_State_Response pair
to measure on a per-Port basis); or

– a long fixed time period.

Another system and/or Port dependent
parameter, Max_Retry, specifies the maximum
number of times to retry an Operation. If
Max_Retry is reached without success, then the
Operation is considered to be aborted and control
shall be passed to the ULP.
Max_Retry_Occurances shall be logged.

9.2 Operation Pairs

Table 4 lists the Operation pairs – command and
response, or response and completion – that shall
be retried if the associated response is not
received within an Op_timeout.

In addition to the entries in table 4,
Request_State_Response is a corresponding pair
for Data Operations which have Send_State = 1.
If the Request_State_Response is not received,
then the Originating Source may send a
Request_State to obtain the state information.

The ULP in the Final Destination that issues a
Clear_To_Send, or Request_To_Receive, is
responsible for timing out these Operations. The
ULP may or may not use Op_timeout to indicate
failure.

Table 4 – Operation pairs guarded by
Op_timeout

Operation Response(s)

Request_Port Request_Port_Response

Port_Teardown Port_Teardown_Ack

Port_Teardown_Ack Port_Teardown_Complete

Request_To_Send Request_To_Send_Response
or Clear_To_Send

Request_To_Receive Data or
Request_To_Receive_Response

Request_State Request_State_Response

End End_Ack

9.3 Syntax errors

9.3.1 Undefined Opcode

An Operation with an undefined Opcode value
shall be discarded, an Undefined_Opcode_Error
shall be logged, and the Opcode logged in
Undefined_Opcode_Value.

9.3.2 Unexpected Opcode

Most of the Operations require previous
Operations to set up state on each device. If a
device receives an out of sequence Opcode
(e.g., receiving a Request_Port_Response
without sending the initiating Request_Port), the
Operation shall be discarded, an
Unexpected_Opcode_Error shall be logged, and
the Opcode logged in
Unexpected_Opcode_Value.

9.4 Virtual Connection errors

9.4.1 Invalid Key or Port

All Operations, excluding Request_Port, should
have a Key (see 4.3.3) value that validates the
Operation for the Virtual Connection. Operations
with an invalid Key shall not be executed, and an
Invalid_Key_Error shall be logged.

working draft - HIPPI-ST Rev 0.7, 6/5/97

28

All Operations should have a valid Destination
Port value (see 4.3.2). Operations with an
invalid Destination Port value shall not be
executed, and an Invalid_Port_Error shall be
logged.

NOTE – Multiple contiguous invalid Key and/or Port
values may indicate a problem with the link or a
malicious host on the network. The supervising
process should be informed.

9.4.2 Slots exceeded

Operations that exceed the number of Slots (see
4.3.6) for the Virtual Connection may not be
executed, and a Slots_Exceeded_Error shall be
logged.

9.4.3 Unknown EtherType

If a Request_Port Operation contains an unknown
EtherType (see 4.3.2), the receiver shall issue a
Request_Port_Response with the Reject bit set
and log an Unknown_EtherType_Error.

9.4.4 Illegal Bufsize

If a Request_Port contains a Bufsize (see 4.3.4)
value that is < 8 or > 63, (i.e., Buffer size < 28

bytes, or > 263 bytes), then the receiver shall
respond with a Request_Port_Response with
Reject = 1. If a Request_Port_Response
contains a Bufsize value that is < 8 or > 63, then
the receiver shall respond with a Port_Teardown.
In either case, an Illegal_Bufsize_Error shall be
logged.

9.4.5 Illegal STU size

The maximum STU sizes (A-Max-STU and B-
Max-STU) were determined during the Virtual
Connection setup (see 4.3.5, 7.1 and 7.2). If the
received STU is greater than the maximum STU
size, then the STU shall be discarded and an
Illegal_STU_Size_Error shall be logged.

9.5 Scheduled Transfer errors

9.5.1 Invalid S_id

All Scheduled Transfer Operations, except
Request_To_Send, should have a valid
Destination id (R_id) (see 4.4.2) for quickly

accessing state information for this Scheduled
Transfer. After checking the R_id, the S_id
should match the stored value for this Transfer.
An invalid S_id shall result in not executing the
Operation and logging an Invalid_S_id_Error.

9.5.2 Bad Data Channel specification

During a Request_To_Send Operation, the
sending device declares the lower layer Data
Channel that will carry Data Operations for this
Scheduled Transfer. Some Data Channels may
not be available for Scheduled Transfers
depending on the lower layer (e.g., b'00' is not a
valid choice on HIPPI-6400 as it indicates VC0
which is reserved for Control Operations). The
receiver shall issue a
Request_To_Send_Response with the Reject bit
set.

9.5.3 Persistent not available

If the Virtual Connection did not specify the
capability for Persistent (see 4.3.7) during the
Virtual Connection establishment (see 7.1 and
7.2), any Scheduled Transfer Operations on this
Virtual Connection with the Persistent bit set shall
not be executed. The Operation shall be rejected
and a Persistent_Error logged.

9.5.4 Out of Range B_num, Bufx, Offset, or
S_count

During the Clear_To_Send, Data, and
Request_State_Response Operations, a Block
number (see 4.4.5) may appear that is outside
the calculated number of Blocks for the Transfer.
If an out of range Block number is encountered,
the receiver shall not execute the Operation and
shall log an Out_Of_Range_B_num_Error.

If a Data Operation contains a Bufx and/or Offset
(see 4.4.8) that exceeds the buffer range
allocated by the Final Destination for outstanding
Clear_To_Sends, then the receiver shall not
execute the Operation and shall log an
Out_Of_Range_Bufx_Error.

If a Data Operation contains an Offset (see 4.4.8)
larger than the buffer size, the receiver shall not
execute the Operation and shall log an
Oversized_Offset_Error.

working draft - HIPPI-ST Rev 0.7, 6/5/97

29

If a Data Operation contains an S_count (see
4.4.7) that is not one greater than the previous
STU for this Block, then the STU is out of order.
The receiver shall discard the STU and log an
Out_Of_Order_STU_Error.

9.5.5 Block out of order error

If a Data Operation contains a B_num that is not
one greater than the previous B_num for this
Transfer, and Out_of_Order (see 6.2) capability
was not specified during the Virtual Connection
establishment (see 7.1), then the Final
Destination shall log an Out_Of_Order_B_num
and may terminate the Transfer with an End
sequence.

9.5.6 Illegal Blocksize

If a Request_To_Send_Response, or
Clear_To_Send, contains a Blocksize (see 4.4.6)
value that is < 8 or > 63, (i.e., Block size < 28

bytes, or > 263 bytes), then the receiver should
discard the offending Operation and log an
Illegal_Blocksize_Error.

9.5.7 Request_To_Receive error

The Request_To_Receive Operation (see 8.3)
must be set up by previous Request_To_Send
and Clear_To_Send Operations. If these
Operations have not occurred, then the
Request_To_Receive Operation shall be
discarded, a Request_To_Receive_Response
with Reject = 1 sent to the remote end device in
response, and a Request_To_Receive_Error
logged.

9.5.8 Undefined Flag

If a received Operation contains a flag =1 and
use of that flag is not defined for that Operation,
then the flag shall be ignored and an
Improper_Flag_Use_Error should be logged.

Table 5 – Summary of logged errors

Name Occurs in Operation

Illegal_Blocksize_Error RTSR, CTS

Illegal_Bufsize_Error RQP, RQPR

Illegal_STU_Size_Error Data

Improper_Flag_Use_Error all

Invalid_Key_Error all except RQP

Invalid_Port_Error all

Invalid_S_id_Error all with an R_id

Max_Retry_Occurance
End, PT, PTA, RQP,

RS, RTR, RTS

Op_timeout_Occurance
End, PT, PTA, RQP,

RS, RTR, RTS

Out_Of_Order_B_num Data

Out_Of_Order_STU_Error Data

Out_Of_Range_B_num_Error CTS, Data, RS, RSR

Out_Of_Range_Bufx_Error Data

Oversized_Offset_Error Data

Persistent_Error RTS

Request_To_Receive_Error RTR

Slots_Exceeded_Error all with Opcode ≥ 6

Undefined_Opcode_Error not applicable

Undefined_Opcode_Value not applicable

Unexpected_Opcode_Error all except RQP

Unexpected_Opcode_Value all except RQP

Unknown_EtherType_Error RQP
Operation abbreviations:

CTS = Clear_To_Send
PT = Port_Teardown
PTA = Port_Teardown_Ack
RQP = Request_Port
RQPR = Request_Port_Response
RS = Request_State
RSR = Request_State_Response
RTR = Request_To_Receive
RTS = Request_To_Send
RTSR = Request_To_Send_Response

working draft - HIPPI-ST Rev 0.7, 6/5/97

30

Annex A
(normative)

Using lower layer protocols

A.1 HIPPI-6400-PH as the lower layer

ANSI X3.xxx defines HIPPI-6400-PH, portions of
which are repeated here as an aid to the reader.
As shown in figure A.1, HIPPI-ST Operations
shall be carried over HIPPI-6400-PH with the first
eight bytes of the HIPPI-ST Schedule Header
occupying the last eight bytes of the HIPPI-6400-
PH Header micropacket.

All HIPPI-ST Control Operations shall be carried
on HIPPI-6400-PH Virtual Channel VC0. Data
Operations shall use Virtual Channel 1, 2, or 3 as
specified in the HIPPI-ST Data Channel
Assignment flag bits (see 6.2) and carried in a
Request_To_Send Operation (see 8.1).

HIPPI-ST shall also specify the EtherType value
that is placed in the HIPPI-6400-PH MAC Header
(see the reference for RFC 1700 in 4.3.2).

M_len (in the HIPPI-6400-PH MAC Header),
specifies the number of bytes following M_len,
exclusive of any padding in the last micropacket.
Hence, M_len will have the following values:

– M_len = 48 for Control Operations without an
optional payload (i.e., 48 = 8 byte IEEE 802.2
LLC/SNAP Header + 40-byte HIPPI-ST
Schedule Header);

– M_len = 80 for Control Operations with
optional payload;

– M_len = (48 + number of user data payload
bytes) for Data Operations.

A.2 HIPPI-FP as the lower layer

ANSI X3.210 defines HIPPI-FP, portions of which
are repeated here as an aid to the reader. As
shown in figure A.2, HIPPI-ST Operations shall
be carried over HIPPI-FP in the D2_Area. The
HIPPI-FP D1_Area shall not be used. The
HIPPI-FP D2_Offset shall be set to zero. Short
bursts shall only be used at the end of a packet,
i.e., short first burst is disallowed. Note that
D2_Size = M_len + 16.

The HIPPI-6400-PH MAC and LLC/SNAP
Headers are defined in ANSI X3.xxx, portions of
which are repeated here as an aid to the reader.
The MAC and LLC/SNAP headers are included to
facilitate translation to other protocols. The 48-bit
ULA addresses allow address assignment and
usage common to other networking technologies.

working draft - HIPPI-ST Rev 0.7, 6/5/97

31

HIPPI-6400-PH
MAC and

LLC/SNAP
Headers

HIPPI-ST
Header

(defined in 6.1
and shown

here as an aid
to the reader)

First 32-byte
HIPPI-6400-PH

Type = Data
micropacket

D_ULA

(lsb)

(lsb)
S_ULA

M_len

DSAP SSAP Ctl Org

EtherTypeOrg Org

Op Flags S_count

R_Port S_Port

Key

R_id S_id

Bufx

Offset

Sync

B_num

OS_Bufx

OS-Offset

Optional 32-byte payload
(in Control Operations)

or

Up to 231 bytes (2 gigabytes) of
HIPPI-ST data payload (i.e., STU)

(in Data Operations)

HIPPI-ST
payload

NOTE – Shown as 32-bit words

32-byte
HIPPI-6400-PH
Type = Header

micropacket

Additional 32-byte
HIPPI-6400-PH

Type = Data
micropacket(s)

Figure A.1 – HIPPI-ST Operations carried in HIPPI-6400-PH Messages

working draft - HIPPI-ST Rev 0.7, 6/5/97

32

HIPPI-FP
Header

HIPPI-6400-PH
MAC and

LLC/SNAP
Headers

HIPPI-FP
Header Area

HIPPI-FP
D2_Area

ULP-id P B Reserved D1_Area_Size D2_
Offset

D2_Size

D_ULA

(lsb)

(lsb)
S_ULA

M_len

DSAP SSAP Ctl Org

EtherTypeOrg Org

Op Flags S_count

R_Port S_Port

Key

R_id S_id

Bufx

Offset

Sync

B_num

OS_Bufx

OS-Offset

Optional 32-byte payload
(in Control Operations)

or

Up to 231 bytes (2 gigabytes) of
HIPPI-ST data payload (i.e., STU)

(in Data Operations)

HIPPI-ST
payload

NOTE – Shown as 32-bit words

HIPPI-ST
Header

(defined in 6.1
and shown

here as an aid
to the reader)

Figure A.2 – HIPPI-ST Operations carried in HIPPI-FP packets

working draft - HIPPI-ST Rev 0.7, 6/5/97

33

Annex B
(informative)

HIPPI-ST striping

B.1 Striping principles

HIPPI-ST is capable of supporting multiple
physical interfaces for a single Transfer (see
figures B.1–B.3). This striping capability may be
of benefit when a single interface is not able to
support required data rates. It may be especially
useful where data is moved from many slower
interfaces to a single faster interface or vice-
versa. It may also be used with multiple
interfaces at both the Originating Source and
Final Destination. Mechanisms to set up, select,
and control the underlying physical interfaces are
beyond the scope of this standard.

The Block is the basic striping unit. Each Block
contains sufficient information to completely
identify an individual Transfer and the Block's
location within the Transfer. The only difference
between striped and non-striped operation is the
selection of port MAC addresses to allow
concurrent data movement. Striping is not done
on an STU basis because striped STUs can not
be guaranteed to be delivered in-order.

There are a few conventions that should be
followed to facilitate striping:

– Block sizes (when striping is desirable) must
be small enough to support concurrency and
allow each channel to have at least one Block
to send.

– Sufficient Clear_To_Send Operations should
be kept outstanding by a data receiver to allow
concurrent Data Operations.

– The interface adapter(s) must be capable of
handling multiple Blocks simultaneously. This
may require communication between interfaces
(or their software drivers) within a system.

– The return physical address (e.g., ULA), for
each Operation is specified by the Source ULA
for that Operation. HIPPI-ST implementers
should not assume that the Source ULA for a
given port will remain constant.

– The Destination must signify that it supports
delivery of Blocks in any order (i.e.,
Out_of_Order = 1, see 6.2) during the Virtual
Connection setup.

B.2 Many-to-one striping

Figure B.1 shows using a number of lower-
throughput interfaces, aggregated together, to
communicate with one higher-throughput
interface (using a translator or bridge). Striping
the lower-throughput interfaces together can
allow legacy systems to communicate quickly
over newer network infrastructures. In this case,
action to implement striping is required only on
the side of the lower-throughput interface.

After port setup, data movement is initiated with a
Request_To_Send Operation. A
Request_To_Send_Response will be received,
either as a discrete message or as part of a
Clear_To_Send. As Clear_To_Send Operations
are received, the system with multiple lower-
throughput ports can move a Block of data for
each Clear_To_Send received. As many Blocks
can be in transit concurrently as there are ports
to carry them and Clear_To_Send Operations
authorizing them.

The system receiving these Blocks processes
them normally, placing them into memory as their
Bufx and Offset values dictate.

B.3 One-to-many striping

Figure B.2 shows how Transfers made from one
higher-throughput interface can also be spread
across more than one lower-throughput interface
without any special action on the part of the
higher-throughput system.

After port setup, the Transfer is initiated with a
Request_To_Send Operation from the higher-
throughput interface. The lower-throughput
interface that has done the port setup will return a

working draft - HIPPI-ST Rev 0.7, 6/5/97

34

Request_To_Send_Response, either as a
discrete Operation or as part of a
Clear_To_Send. Each Clear_To_Send issued
should be sent from the interface desiring the
data.

An alternative is to send all of the
Clear_To_Send Operations from a single
interface and substitute the desired physical
return address (e.g., ULA) for the
Clear_To_Send's Source ULA (making it appear
that the Clear_To_Send's Source ULA was
generated by the interface desiring the data).
Subsequent Data Operations may then be done
concurrently and will use a Source ULA from the
Clear_To_Send Operation as the Destination
ULA. Using this substitution method in

combination with a dedicated control channel
may also prevent or reduce blocking effects
where the underlying physical medium suffers
from high latency.

B.4 Many-to-many striping

Figure B.3 shows many-to-many striping as the
combination of the one-to-many and many-to-one
striping. The system receiving data indicates its
desire to receive in a striped fashion by issuing
multiple Clear_To_Send Operations with differing
return interface addresses. The system sending
data chooses to stripe by sending from multiple
interfaces that are capable of reaching the proper
destination.

System with
4 lower-

throughput
interfaces

System with a
single higher-

throughput
interface

Block 1

Block 2

Block 3

Block 4
Intermingled STUs
for Blocks 1 to 4

Clear_To_Sends for Blocks 1-4
also sent on these paths in the
reverse direction from the data

Figure B.1 – Many-to-one striping

System with
4 lower-

throughput
interfaces

System with a
single higher-

throughput
interface

Block 1

Block 2

Block 3

Block 4
Intermingled STUs
for Blocks 1 to 4

Clear_To_Send for each Block is sent in the reverse direction on the
same path each Block traverses (or is made to appear that way)

Figure B.2 – One-to-many striping

System with
four

interfaces

System with
four

interfaces

Block 1

Block 2

Block 3

Block 4

Block 1

Block 2

Block 3

Block 4

Clear_To_Send for each Block is sent in the reverse direction on the
same path each Block traverses (or is made to appear that way)

Figure B.3 – Many-to-many striping

working draft - HIPPI-ST Rev 0.7, 6/5/97

35

Annex C
(informative)

Scheduled Transfer example

We were not able to complete all of the edits on Annex C, but it is a start. No margin bars or highlights.

The following examples demonstrate various
aspects of the scheduled transfer mechanism.
The examples are intended for generic
application, but may contain some
implementation specific ideas. The examples
included are:

– Detailed simple transfer example (see C.1)

– Persistent memory example (see C.2)

– Striped Ethernet to HIPPI-6400 example (see
C.3)

– Striped HIPPI-800 to HIPPI-6400 example
(see C.4)

C.1 Detailed simple transfer example

This example demonstrates the basic Scheduled
Transfer Operations. Device X is sending a 256
KB file to device Y.

– Fields that contain a * are unused and
transmitted as zeroes.

– A hex value that takes up fewer bits than its
field has zeroes in the upper bits.

– Table C.1 shows all fields and corresponding
values for the numbered Operations shown
below. The Operation description and table
location are correlated by the numbers in
parentheses.

C.1.1 Virtual Connection set up

Device Y initiates a Virtual Connection setup with
device X using a Request_Port Operation. The
Virtual Connection setup is a dual direction
connection and either device can begin a
Scheduled Transfer after setup, independent of
which device initiated the Virtual Connection.

(1) Y->X

Request_Port (
Op: ‘x01’,
A-Slots: SlotsY,
B-Port: x’0000’,
A-Port: PortY,
A-Bufsize: x’10’ (BufsizeY = 64 KB),
A-Key: KeyY,
A-Max-STU: x’10’ (Max-STUY = 64 KB),
EtherType: B_num)

Device Y provides its Key, Port, available slots,
Bufsize, Max-STU, and the EtherType for this
Virtual Connection to device X. X binds to the
well-known Port x'0000' which is used for Port
setup. Based on the EtherType a corresponding
Port value is mapped and sent in the
Request_Port_Response. Device X responds to
the request with a Request_Port_Response.

(2) X->Y

Request_Port_Response (
Op: x‘02’
B-Slots: SlotsX
A-Port: PortY,
B-Port: PortX,
A-Key: KeyY,
B-Bufsize: x’0E’ (BufsizeX = 16 KB),
B-Key: KeyX,
B-Max-STU: x’0E’ (Max-STUX = 16 KB))

Device X provides its Key, Port, available Slots,
Bufsize, and Max-STU to device Y. Y binds to
KeyY and PortY to associate the response with
the above Request_Port (as opposed to other
Request_Ports that Y may have initiated).

A dual direction Virtual Connection has been
established and both sides know the other's Key,
Port, available Slots, Bufsize, and Max-STU.
The Keys are an authentication value which will
stop invalid Operations, (e.g., an inadvertent
Port_Teardown Operation might destroy the

working draft - HIPPI-ST Rev 0.7, 6/5/97

36

Virtual Connection and all ongoing transfers).
The Port values are used to map to upper-layer
entities and may be the same mapping used for
Internet style Ports. The Slot value gives the
destination flow control power over all Operations
requiring a Slot. The Max-STU provides a means
for device X and device Y to declare the
maximum size of data payloads it can accept,
independent of its buffer size. The Bufsize
parameter (buffer size) provides buffer size
information needed for. The intermediate device
has a smaller STU size.

Figure C.1 summarizes the information provided
by each device during the Virtual Connection set
up.

Device X
SlotsX
PortX
KeyX
BufsizeX
Max-STUX

Device Y
SlotsY
PortY
KeyY
BufsizeY
Max-STUY

Function
Slot flow control
Port binding
Authentication
Buffer size
STU size limit

Virtual Connection values

Figure C.1 – Virtual Connection information
exchanged

C.1.2 Scheduled Transfer set up

Device X, the Originating Source, initiates a 256
KB Transfer using the Virtual Connection
established above to device Y, the Final
Destination.

(3) X->Y

Request_To_Send (
Op: x’16’,
Flags: D2 (Data channel = 2),
R_Port: PortY,
S_Port: PortX,
Key: KeyY,
S_id: idX,
T_len: x’40000’ (256 KB))

Device Y expects the data to be delivered on
Data Channel 2 as specified in the Flags
parameter. Device Y reads the Transfer length

(256 KB), agrees to accept the Transfer, and
responds with a Request_To_Send_Response.

 (4) Y->X

Request_To_Send_Response (
Op: x’17’,
S_count: x’11’ (128 KB Blocksize),
R_Port: PortX,
S_Port: PortY,
Key: KeyX,
R_id: idX,
S_id: idY,

Device Y selects a Blocksize of 217 (128 KB).
The 256 KB Transfer will consist of two 128 KB
Blocks. Device Y assigns an identification (idY)
which it can use to quickly identify the correct
transfer.

All further Scheduled Transfer Operations will
continue to use the appropriate binding
information: Key, Ports, and the identifications
but they are not shown in the remaining steps of
this example. See table C.1 for the exhaustive
list of parameters for each operation.

C.1.3 Block 0 transfer

Device Y sends a Clear_To_Send Operation
once it has finished allocating resources for the
Transfer.

(5) Y->X

Clear_To_Send (
Op: x’1A’,
S_count: x’11’ (128 KB Blocksize),

R_Port: PortX,
S_Port: PortY,
Key: KeyX,
XBufx: Bufval,

Offset: x’0’,
B_num: x’0’,
OS_Offset: x’0’)

The Clear_To_Send contains the Final
Destination's (device Y) starting buffer index
(Bufx), the Initial Offset, and the Offset for this
Block.

In this example, an efficient tiling between the
two nodes is apparent. Device X can send eight
16 KB STUs to fill a Block in device Y. However,
HIPPI-ST accommodates a large range of
implementations by allowing any number and

working draft - HIPPI-ST Rev 0.7, 6/5/97

37

size of STUs to fill a Block with the following
requirements: an STU may not exceed the Max-
STU size, 64 KB in this case; and an STU may
not be sent to the Final Destination that would
overrun a Buffer boundary, Block boundary, or
Transfer boundary. For the first Block, the
Originating Source, limited by its own buffer size,
sends eight 16 KB STUs.

(6-13 all Data Operations) X->Y

Flags S_count Bufx Offset B_num

(6) T,D2 x'0' Bufval x'0' x'0'

(7) T,D2 x'1’ Bufval x'4000' x'0'

(8) T,D2 x'2' Bufval x'8000' x'0'

(9) T,D2 x'3' Bufval x'C000' x'0'

(10) T,D2 x'4' Bufval+1 x'0' x'0'

(11) T,D2 x'5' Bufval+1 x'4000' x'0'

(12) T,D2 x'6' Bufval+1 x'8000' x'0'

(13) L,D2 x'7' Bufval+1 x'C000' x'0'

As can be seen in this example, the Originating
Source does most of the work to align the Buffer
regions in the Destination. Figure C.2 shows how
the first Block fits into Y's Bufx regions. The last
STU of the Block has Silent = 0 so that a Slot
resource will be allocated for this STU (informing
the ULP of Block reception).

16kB

16kB

16kB

16kB

16kB

16kB

16kB

16kB

X Y

3

4

5

7

Bufx
Bufval

Bufx
Bufval+1

S_count

2

1

0

6

Figure C.2 – Block 0 buffer tiling

C.1.4 Block 1 Clear_To_Send

The second Clear_To_Send allows device X to
begin sending the second Block. Because the
two Clear_To_Sends contain no overlapping
buffer regions (in this example), they could have
been issued one after another. The second
Clear_To_Send could also use the same Bufx as
the first one, but only if it waits for the first Block
to complete before issuing the second
Clear_To_Send.

Open Issue - Should the second Block start at a
completely different Bufx range, e.g., Bufval+50, to
reinforce the idea of each Block being indepent of each
other?

(14) Y->X

Clear_To_Send (
Op: x’1A’,
S_count: x’11’ (128 KB Blocksize),
R_Port: PortX,
S_Port: PortY,
Key: KeyX,
Bufx: Bufval2,
Offset: x’0’,
Sync: B_id
B_num: x’1’,
OS_Offset: x’0’)

working draft - HIPPI-ST Rev 0.7, 6/5/97

38

For the second Block, the Originating Source
grows a buffer gather mechanism which can pull
two buffers at a time. The resulting Data
operations appear below.

(15-18 are all Data Operations) X->Y

Flags S_count Bufx Offset B_num

(15) T,D2 x'0' Bufval2 x'0' x'1'

(16) T,D2 x'1' Bufval2 x'8000' x'1'

(17) T,D2 x'2' Bufval2+1 x'0' x'1'

(18) S,L,D2 x'3' Bufval2+1 x'8000' x'1'

Figure C.3 shows the resulting tiling.

16KB

16KB

16KB

16KB

X Y

Bufx
Bufval2

Bufx
Bufval2+1

S_count

16KB

16KB

16KB

16KB

0

1

3

2

Figure C.3 – Block 1 buffer tiling

The last Data Operation contains the Send_State
flag which triggers device Y to update the Slot
value and acknowledge the last Block received.
Each of the Data Operations carries a
synchronization value in the Sync parameter
which the Request_State_Response will echo so
device X can synchronize its Slot parameter with
the number of outstanding Operations.

(19) Y->X

Request_State_Response (
Op: x’1D’,
S_count: C-SlotsY,
R_Port: PortX,
S_Port: PortY,
Key: KeyX,
Offset: x’1’,
Sync: SyncX,
B_num: x’1’)

The Request_State_Response contains an
updated Slot value, called C-SlotsY. The Block
number acknowledges this Block and all lower
numbered Blocks. The B_seq contains the
highest received Block number in a contiguous
set from the first Block. The value in B_num
acknowledges the Block that had the Send_State
flag set.

C.1.5 Ending the Virtual Connection

Either side can terminate the Virtual Connection
and free all of the resources associated with the
Virtual Connection.

(20) Y->X

Port_Teardown (
Op: x’03’,
R_Port: A-Port,
S_Port: B-Port,
Key: A-Key)

(21) X->Y

Port_Teardown_ACK (
Op: x’04’,
R_Port: B-Port,
S_Port: A-Port,
Key: B-Key)

(22)Y->X

Port_Teardown_Complete (
Op: x’05’,
R_Port: A-Port,
S_Port: B-Port,
Key: A-Key)

working draft - HIPPI-ST Rev 0.7, 6/5/97

39

Table C.1 – Scheduled Transfer example summary

Operation Op Flags S_count R_Port S_Port Key R_id S_id Bufx Offset Sync B_num

(1) Request_Port (Y->X) x’01’ * SlotsY x’0000’ PortY * * * x’10’

(64 KB)

KeyY x’10’

(64 KB)

Ether-
Type

(2) RQP_Response (X->Y) x’02’ * SlotsX PortY PortX KeyY * * x’0E’

(16 KB)

KeyX x’0E’

(16 KB)

*

(3) Request_To_Send (X->Y) x’16’ D2 * PortY PortX KeyY * idX * * x’40000’

(4) RTS_Response (Y->X) x’17’ * x’11’ PortX PortY KeyX idX idY * * * *

(5) Clear_To_Send (Y->X) x’1A’ * x’11’ PortX PortY KeyX idX idY Bufval x’0’ * x’0’

(6) Data (X->Y) x'1B' T, D2 0 PortY PortX KeyY B_id1 idX Bufval x’0’ Syncval x’0’

(7) Data (X->Y) x'1B' T, D2 1 PortY PortX KeyY B_id1 idX Bufval x’4000’ Syncval x’0’

(8) Data (X->Y) x'1B' T, D2 2 PortY PortX KeyY B_id1 idX Bufval x’8000’ Syncval x’0’

(9) Data (X->Y) x'1B' T, D2 3 PortY PortX KeyY B_id1 idX Bufval x’C000’ Syncval x’0’

(10) Data (X->Y) x'1B' T, D2 4 PortY PortX KeyY B_id1 idX Bufval+1 x’0000’ Syncval x’0’

(11) Data (X->Y) x'1B' T, D2 5 PortY PortX KeyY B_id1 idX Bufval+1 x’4000’ Syncval x’0’

(12) Data (X->Y) x'1B' T, D2 6 PortY PortX KeyY B_id1 idX Bufval+1 x’8000’ Syncval x’0’

(13) Data (X->Y) x'1B' L, D2 7 PortY PortX KeyY B_id1 idX Bufval+1 x’C000’ Syncval x’0’

(14) Clear_To_Send (Y->X) x’1A’ * x’11’ PortX PortY KeyX idX idY2 Bufval+2 x’0’ * x’1’

(15) Data (X->Y) x'1B' T, D2 0 PortY PortX KeyY B_id2 idX Bufval2 x’0’ Syncval x’1’

(16) Data (X->Y) x'1B' T, D2 1 PortY PortX KeyY B_id2 idX Bufval2 x’8000’ Syncval x’1’

(17) Data (X->Y) x'1B' T, D2 2 PortY PortX KeyY B_id2 idX Bufval2+1 x’0’ Syncval x’1’

(18) Data (X->Y) x'1B' S,L, D2 3 PortY PortX KeyY B_id2 idX Bufval2+1 x’8000’ SyncX x’1’

(19) Request_State_
Response (Y->X)

x'1D' * C-SlotsY PortX PortY KeyX idX idY2 * x’1’ SyncX x’1’

(20) Port_Teardown (Y>X) x’03’ * * PortX PortY KeyX * * * * * *

(21) Port_Teardown_ACK

(X->Y)

x’04’ * * PortY PortX KeyY * * * * * *

(22) Port_Teardown_

Complete (Y->X)

x’05’ * * PortX PortY KeyX * * * * * *

 NOTE – Operations from X to Y are shown in plain text; Operations from Y to X are shown in bold italic.

working draft - HIPPI-ST Rev 0.7, 6/5/97

40

The Port_Teardown is a three-way handshake
that decreases timeout dependency for releasing
resources. The device sending the
Port_Teardown_ACK can release all of the
resources upon reception of the
Port_Teardown_Complete.

C.2 Persistent memory example

Though not detailing a shared memory structure,
the following example presents the setup of a
buffer region that handles both reads and writes,
a building block for shared memory operations.
Figure C.4 shows the devices and Bufx range
used in this example.

Device Red Device Blue

Bufx H
to H+7

Figure C.4 – Persistent memory setup

C.2.1 Set up

The following commands set up the Virtual
Connection:

(1) Red à Blue

Request_Port (
Op: x’01’,
Slots: SlotsRed,
R_Port: Port,
S_Port: Port,
Bufsize: x’0E’ (16 KB),
XKey: KeyRed,
Max-STU: x’0E’ (16 KB),
Ethertype: Local)

(2) Blue à Red

Request_Port_Response (
Op: x’02’,
Flags: P (Persistent),
Slots: SlotsBlue,
R_Port: Port,
S_Port: Port,
Key: KeyRed,
Bufsize: x’0D’ (8 KB),
XKey: KeyBlue,
Max-STU: x’0D’ (8 KB))

Device Blue flags that it accepts Persistent
Request_To_Send transfers. The rest of the
parameters are summarized in table C.2

Table C.2 – Red / Blue Virtual Connection
parameters

Parameter Red Blue

Slots SlotsRed SlotsBlue

Ports Port Port

Keys KeyRed KeyBlue

Bufsize 16 KB 8 KB

Max-STU 16 KB 8 KB

Device Red would like to read and write 64 KB
memory segments on device Blue and issues a
Request_To_Send.

(3) Red à Blue

Request_To_Send (
Op: x’16’,
Flags: P,D1 (Persistent, Channel 1),
S_id: idJ,
T_len: x’10000’ (64 KB))

Device Blue maps the memory, returns a Bufx
value pointing to the first and returns the Bufx to
Red in a Clear_To_Send Operation.

(4) Blue à Red

Clear_To_Send (
Op: x’1A’,

Blocksize: x’10’ (64 KB),
R_Port: Port,
S_Port: Port,
Key: KeyRed,
R_id: idJ,
S_id: idtH,
Bufx: BufxH,
Offset: x’0’,
B_id: x’10000’ (64 KB),
B_num: x’0’,
I_Offset: x’0’)

Device Blue has pinned down the persistent
memory allowing device Red to either read (with
an Request_To_Receive Operation) or write (with
a Data Operation). Note that with Persistent = 1,

working draft - HIPPI-ST Rev 0.7, 6/5/97

41

Data Operations can be issued without being
preceded by a Clear_To_Send Operation from
the other end.

C.2.2 Reading

Device Red would first like to read the
established persistent memory Block prior to
changing memory contents and initiates a
Request_To_Receive to device Blue.

(5) Red à Blue

Request_To_Receive (
Op: x’18’,
Flags: P,D1 (Channel 1),
R_Port: Port,
S_Port: Port,
Key: KeyBlue,
R_id: bidH,
S_id: idJ,
Bufx: BufxH,
Offset: x’0’,
B_id:
Sync: x’10000’ (64 KB),
OS_Bufx: BufxJ,
OS_Offset: x’0’)

Blue receives the Request_To_Receive
Operation and responds with a number of Data
Operations. Each STU is 8 KB, limited by Blue’s
send buffer mechanism. Hence, in this example
eight Data Operations will be used, i.e., 64 KB
Block size divided by the STU size. Only the first
Data Operation is shown in detail, parameter
differences in the following ones are listed below
it.

(6) Blue à Red

Data (
Op: x’1B’,
Flags: T,D1 (Silent, Channel 1)
S_count: x’0’,
R_Port: Port,
S_Port: Port,
Key: KeyRed,
R_id: bidH,
S_id: idH,
Bufx: BufxJ,
Offset: x’0’,
B_num: x’0’)

Flags S_count Bufx Offset

7 T,D1 x'1' BufxJ x'2000'
8 T,D1 x'2' BufxJ+1 x'0'
9 T,D1 x'3' BufxJ+1 x'2000'
10 T,D1 x'4' BufxJ+2 x'0'
11 T,D1 x'5' BufxJ+2 x'2000'
12 T,D1 x'6' BufxJ+3 x'0'
13 T,L,D1 x'7' BufxJ+3 x'2000'

Device Red has successfully read the contents of
the memory location set up on device Blue. Blue
could have set the Send_State flag in the last
Data Operation if it cared to receive an
acknowledgment that device Red completed the
read.

C.2.3 Writing

Next, Red would like to change the memory
contents on Blue and sends a Data Operation
without Block flow control or other setup (after the
initial Request_To_Send, Clear_To_Exchange).
Each STU is 8 KB to fill one of device Blue’s
buffers. Only the first Data Operation is shown in
detail, parameter differences in the ones
following are listed below it.

(14) Red à Blue

Data (
Op: x’1B’,
Flags: T,D1,
S_count: x’0’,
R_Port: Port,
S_Port: Port,
Key: KeyBlue,
R_id: idH,
S_id: idJ,
Bufx: BufxH,
Offset: x’0’,
B_num: x’0’)

Flags S_count Bufx Offset

15 T,D1 x'1' BufxH x'2000'
16 T,D1 x'2' BufxH+1 x'0'
17 T,D1 x'3' BufxH+1 x'2000'
18 T,D1 x'4' BufxH+2 x'0'
19 T,D1 x'5' BufxH+2 x'2000'
20 T,D1 x'6' BufxH+3 x'0'
21 S,L,D1 x'7' BufxH+3 x'2000'

working draft - HIPPI-ST Rev 0.7, 6/5/97

42

The last Data Operation sets the Send_State flag
to confirm reception of the write. Silent = 0 is
used to alert device Blue that the location has
been written.

C.2.4 Closing the persistent memory

Either side can close the persistent memory by
issuing an END operation. Port_Teardown
Operations will also close the persistent memory.

C.3 Translated, striped Ethernet to HIPPI-
6400 example

This example shows multiple Gigabit Ethernet
links and aggregated them onto HIPPI-6400. The
actions of both end devices and the translator are
detailed in this example. Figure C.5 shows the
network topology for this example.

Device Pi

Bridge

Gig-Ethernet
interface A

Gig-Ethernet
interface B

Gig-Ethernet
interface D

Gig-Ethernet
interface C

Device Rho

HIPPI-6400
interface Z

Figure C.5 – Network topology

Pi and Rho are two end devices that need to
communicate large amounts of data.
Unfortunately, Pi only speaks Gigabit Ethernet
and Rho only knows HIPPI-6400. A transparent,
Gigabit-Ethernet-switching translator is placed
between them to break the MAC protocol barrier.
To enable high throughput direct memory access
(DMA) transfers, the devices use the HIPPI-ST
protocol.

The translator will take the HIPPI-6400
Request_Port Operation, look up the correct
Gigabit Ethernet port for A, reformat the HIPPI-
6400 message as a Gigabit Ethernet packet, and
forward the packet to Gigabit Ethernet interface
A.

The following example demonstrates data
transfers moving in both directions between Pi
and Rho.

C.3.1 Virtual Connection Setup

Rho initiates the Virtual Connection setup to Pi’s
interface A ULA address (found using ARP for
Pi). Interface A will act as the control channel
interface as well as one of the Data pipes. A
non-Data control interface could also be used to
reduce any contention between Control and Data
operations on interface A.

Rho inserts a zero into the Max-Blocksize
(carried in the OS_Bufx) parameter. The
translator checks its available buffers for this port
and inserts a Max-Blocksize value of x’13’ (512
KB) into the Request_Port before forwarding it to
Pi.

Z à A

Request_Port (
Op: x’01’,
Flags: O (Out_of_Order),
Slots: SlotsRho,
R_Port: x’0000’,
S_Port: PortRho,
Bufsize: x’0E’ (16 KB),
XKey: KeyRho,
Max-STU: x’0E’ (16 KB),
Ethertype: Ethertype,
Max-Blocksize: x’0’ à x’13’ (512 KB))

Open Issue – Aghh! What’s this new parameter?
The Max-Blocksize states the maximum data that can
be stored and forwarded through the translator without
a strict flow control mechanism running between the
translator and both ends. This means that the
translator can have less complicated ST protocol
hardware, but requires large, high-speed buffers.

Pi processes the request and sends a
Request_Port_Response from interface A. The
translator receives the Request_Port_Response,
converts the Gigabit Ethernet packet format to a
HIPPI-6400 message, and transmits the message
on Virtual Channel 0 (because it’s a Control
Operation). Again, the translator overwrites the
Max-Blocksize value.

working draft - HIPPI-ST Rev 0.7, 6/5/97

43

A à Z

Request_Port_Response (
Op: x’02’,
Flags: O,
Slots: SlotsPi,
R_Port: PortRho,
S_Port: PortPi,
Key: KeyRho,
Bufsize: x’0C’ (4 KB),
XKey: KeyPi,
Max-STU: x’0A’ (1 KB),
Max-Blocksize: x’0’ à x’13’ (512 KB))

Pi has a 4 KB Bufsize and selects a 1 KB Max-
STU size to accommodate the 1500 byte size
constraint of Gigabit Ethernet packets. The
Virtual Connection is established and both
devices have indicated the ability to receive
Blocks out of order (required for translated
striping). Table C.3 summarizes the parameters
exchanged.

Table C.3 – Pi / Rho Virtual Connection
parameters

Parameter Pi Rho

Slots SlotsPi SlotsRho

Ports PortPi PortRho

Keys KeyPi KeyRho

Bufsize 4 KB 16 KB

Max-STU 1 KB 16 KB

Max-Blocksize 512 KB 512 KB

C.3.2 Sending to Rho

Pi needs to send a one megabyte Transfer to
Rho.

A à Z

Request_To_Send (

Op: x’ 16’,
Flags: D1,
Outstanding_Blocks: x’10’,
S_id: idt1C,
T_len: x’100000’ (1 MB))

Open Issue – Note the new parameter in S_count
called “Outstanding Blocks”. The Orig. Source
requires a means to “advise” the Final Destination as
to Blocksize selection to keep the Orig. Source’s
interfaces busy.

Pi selects to send Data Operations through
Virtual Channel 1. Pi sets his preferred number
of outstanding blocks to 16, hopefully, keeping
four blocks outstanding for each of the four
interfaces. The Outstanding Blocks parameter is
only a suggestion and may be ignored by Rho.

A total of 16 Clear_To_Send Operations are sent
from Z to A. Only the first Clear_To_Send is
shown in detail, parameter differences in the
ones following are listed below it.

Z à A

#1, Clear_To_Send (

Op: x’1A’,
Blocksize: x’0F’ (32 KB),
R_id: idt1C,
S_id: idt1H,
Bufx: Rho0,
Offset: x’0’,
B_num: x’0’)

Bufx B_num

2 Rho2 x'1'
3 Rho4 x'2'
4 Rho6 x'3'
5 Rho8 x'4'
6 Rho10 x'5'
7 Rho12 x'6'
8 Rho14 x'7'
9 Rho16 x'8'
10 Rho18 x'9'
11 Rho20 x'A'
12 Rho22 x'B'
13 Rho24 x'C'
14 Rho26 x'D'
15 Rho28 x'E'
16 Rho30 x'F'

Rho selects a Blocksize of 32 KB based on his
buffer size, the Max-Blocksize, and his ability to
handle interrupts. Rho sends 16
Clear_To_Sends to interface A meeting the

working draft - HIPPI-ST Rev 0.7, 6/5/97

44

requested number of outstanding Blocks, while
staying under the Max-Blocksize.

Pi begins receiving the Clear_To_Send requests
through interface A and in a round-robin fashion
farms Data Operation requests to each of the four
Gigabit Ethernet interfaces. Only the first Data
Operation is shown in detail, parameter
differences in the ones following are listed below
it.

From here on out, the example needs to be
compressed. Many of the following commands share
the same parameters and will be made into a table
listing only the differences to make it easier to read.

A à Z

Data (
Flags: T,D1,
S_count: x’0’,
R_id: idt1H,
S_id: idt1C,
Bufx: Rho0,
Offset: x’0’,
B_num: x’0’)

B à Z

Data (
Flags: T,D1,
S_count: x’0’,
R_id: idt1H,
S_id: idt1C,
Bufx: Rho2,
Offset: x’0’,
B_num: x’1’)

C à Z

Data (
Flags: T,D1,
S_count: x’0’,
R_id: idt1H,
S_id: idt1C,
Bufx: Rho4,
Offset: x’0’,
B_num: x’2’)

D à Z

Data (
Flags: T,D1,
S_count: x’0’,
R_id: idt1H,
S_id: idt1C,
Bufx: Rho6,
Offset: x’0’,

B_num: x’3’)

A à Z

Data (
Flags: T,D1,
S_count: x’1’,
R_id: idt1H,
S_id: idt1C,
Bufx: Rho0,
Offset: x’400’ (1 KB),
B_num: x’0’)

… (506 1 KB STU’s later) …

D à Z

Data (
Flags: S,L,D1,
S_count: x’31’,
R_id: idt1H,
S_id: idt1C,
Bufx: Rho31,
Offset: x’3C00’ (15 KB),
B_num: x’15’)

Each of the Data Operations will contain 1 KB of
STU for the simplest tiling scheme (due to the
Gigabit Ethernet packet size restriction). The flag
bits carry the data channel value so the translator
can correctly place each STU on the correct
Virtual Channel. All STU’s are marked silent
except for the last of each Block which requests a
Request_State_Response acknowledgment. The
STU count will range from 0 to 31 for each block
(32 each 1 KB STU’s). The last Data operation
listed above shows interface D sending the last
STU of Block 15 (halfway through the transfer).
The order that the Blocks are sent may not match
the order shown above which is why Rho must
accept out of order Blocks. The translator is
required to switch between the incoming Gigabit
Ethernet interfaces onto VC1 of the HIPPI-6400
interface. The aggregate bandwidth of the
striped Gigabit Ethernets sits around half the
bandwidth of the HIPPI-6400 link and things
should flow smoothly, (note the translator’s
capability to buffer all the outstanding blocks in
case a lack of credits appears on the HIPPI-6400
link).

As groups of 32 1 KB STU’s fill in each Block in
the HIPPI-6400 receive buffers, new blocks may
be cleared for transmission (as long as the 512
KB translator buffer is not overrun). Blocks in

working draft - HIPPI-ST Rev 0.7, 6/5/97

45

error may be resent according to normal HIPPI-
6400 retransmission methods.

Rho will clear another 16 Blocks for transmission
to complete the megabyte Transfer.
Acknowledgments are sent in the normal manner.

C.3.3 Sending to Pi

Rho received the first transfer and after changing
a bit, sends the megabyte of data back to Pi.

Z à A

Request_To_Send (
 Flags: D2,
 Outstanding_Blocks: x’0’,
 S_id: idt2H,
 T_len: x’100000’ (1 MB))

Rho plans to send on Data Channel 2 and sets
the outstanding Blocks to zero showing that Rho
doesn’t care. This will allow Pi to select a
Blocksize that is not constrained by a set number
of Blocks, (but still by the Max-Blocksize).

A à Z

Clear_To_Send (
Blocksize: x’11’ (128 KB),
R_id: idt2H,
S_id: idt2C,
Bufx: Pi0,
Offset: x’0’,
B_num: x’0’)

B à Z

Clear_To_Send (
Blocksize: x’11’ (128 KB),
R_id: idt2H,
S_id: idt2C,
Bufx: Pi32,
Offset: x’0’,
B_num: x’1’)

C à Z

Clear_To_Send (
Blocksize: x’11’ (128 KB),
R_id: idt2H,
S_id: idt2C,
Bufx: Pi64,
Offset: x’0’,
B_num: x’2’)

D à Z

Clear_To_Send (
Blocksize: x’11’ (128 KB),
R_id: idt2H,
S_id: idt2C,
Bufx: Pi96,
Offset: x’0’,
B_num: x’3’)

A à Z

Clear_To_Send (
Blocksize: x’11’ (128 KB),
R_id: idt2H,
S_id: idt2C,
Bufx: Pi128,
Offset: x’0’,
B_num: x’4’)

B à Z

Clear_To_Send (
Blocksize: x’11’ (128 KB),
R_id: idt2H,
S_id: idt2C,
Bufx: Pi160,
Offset: x’0’,
B_num: x’5’)

C à Z

Clear_To_Send (
Blocksize: x’11’ (128 KB),
R_id: idt2H,
S_id: idt2C,
Bufx: Pi192,
Offset: x’0’,
B_num: x’6’)

D à Z

Clear_To_Send (
Blocksize: x’11’ (128 KB),
R_id: idt2H,
S_id: idt2C,
Bufx: Pi224,
Offset: x’0’,
B_num: x’7’)

Each of Pi’s interfaces responds with two
Clear_To_Send's containing its ULA in the
Source Address (for the correct return of Data
Operations to each interface). The Blocksize of
128 KB means that only four Blocks may be
outstanding without overrunning the translator’s
Max-Blocksize value. Because eight Blocks have
been cleared, the translator will queue the last
four Clear_To_Send's until the previous ones

working draft - HIPPI-ST Rev 0.7, 6/5/97

46

have been sent by the translator. Since only a
single Block will remain outstanding to any of the
Gigabit Ethernet interfaces, some lag time will
result in clearing the next Block.

Z à A

Data(
Flags: T,D2,
S_count: x’0’,
R_id: idt2C,
S_id: idt2H,
Bufx: Rho0,
Offset: x’0’,
B_num: x’0’)

Z à B

Data(
Flags: T,D2,
S_count: x’0’,
R_id: idt2C,
S_id: idt2H,
Bufx: Rho2,
Offset: x’0’,
B_num: x’1’)

Z à C

Data(
Flags: T,D2,
S_count: x’0’,
R_id: idt2C,
S_id: idt2H,
Bufx: Rho4,
Offset: x’0’,
B_num: x’2’)

Z à D

Data(
Flags: T,D2,
S_count: x’0’,
R_id: idt2C,
S_id: idt2H,
Bufx: Rho6,
Offset: x’0’,
B_num: x’3’)

Z à A

Data(
Flags: T,D2,
S_count: x’1’,
R_id: idt2C,
S_id: idt2H,
Bufx: Rho0,
Offset: x’400’ (1 KB),

B_num: x’0’)
…(506 1 KB STU’s later) …

Z à D

Data(
Flags: S,L,D2,
S_count: x’127’,
R_id: idt2C,
S_id: idt2H,
Bufx: Rho31,
Offset: x’1FC00’ (127 KB),
B_num: x’3’)

Obeying the Max-STU, Rho sends 1024 1 KB
STU’s, but the larger blocks may cause lulls
during the transfer when Rho has not received a
new Clear_To_Send to keep things going.

NOTES –

1 – In order for people to actually implement and
make things useful, striping needs to be kept
simple or it will be the option that doesn’t happen. I
believe this partially includes somewhat restricting
the “applicable in all situations” attributes that are
nice, but not always necessary.

2 – Setting Clear_To_Send's small enough to keep
Blocks in motion without overrunning the Max-
Blocksize parameter.

3 – Efficient use of the translator’s buffers must be
maintained. The Max-Blocksize communicated
during port setup must be shared by all transfers.
The value is called Max-Blocksize and not
intermediate storage size as the host may produce
more Clear_To_Send's worth in data than the
translator can buffer (as long as the Blocksize is not
larger than the translator’s declared maximum).
The translator will queue the Clear_To_Send
requests forwarding only the number that can be
safely handled by the translator. Once the block for
an outstanding Clear_To_Send is sent, the next
Clear_To_Send in the queue may proceed to the
end host.

4 – This is all new and the only way the author
could think of to enable a now semi-transparent
translator between ST devices.

5 – A less complex method can be easily applied to
simple N to N stripes across the same media.
Neither of the suggested new parameters are
required for direct N to N striping.

